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Abstract

A linear dynamic model of fully saturated porous media with local (either microscopic or mesoscopic) heterogene-
ities is developed within the context of Biot’s theory of poroelasticity. Viscoporoelastic behavior associated with local
fluid flow is characterized by the notion of the dynamic compatibility condition on the interface between the solid and
the fluid. Complex, frequency-dependent material parameters characterizing the viscoporoelasticity are derived. The
complex properties can be obtained through determining the quasi-static poroelastic parameters, the properties of indi-
vidual constituents, and the relaxation time of the dynamic compatibility condition on the interface. Relationships
among various quasi-static poroelastic parameters are developed. It is shown that local fluid flow mechanism is signif-
icant only in the porous media with local heterogeneities. The relaxation time of the compatibility condition on the
interface depends upon the details of local structure of porous media that control local fluid pressure diffusion. The
new model is used to describe the velocity dispersion and attenuation in fully saturated porous media. The proposed
model provides a theoretical framework to simulate the acoustical behavior of fully saturated porous media over a wide
range of frequencies without making any explicit assumption about the structure of local heterogeneities.
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1. Introduction

Natural porous media such as rocks and sediments in the earth generally have heterogeneity in their
material properties at different spatial scales. When a stress wave passes through a heterogeneous porous
medium saturated by a fluid, pore fluids existing in different regions respond with different changes in their
pore pressures. An internal pore pressure equilibrating process then takes place leading to pore fluid flowing
from higher pressure regions to lower pressure regions. According to the distance over which fluid pressure
try to equilibrate, three regimes of fluid flow can be identified (Cleary, 1978; Pride et al., 2003). Macroscopic
(wavelength-scale) flow is driven by fluid pressure gradient developing at the peak and trough of the stress
wave. At microscopic (pore) scales, the fluid is squeezed out of or taken into microcracks and broken grain
contacts (Mavko and Nur, 1975; O’Connell and Budiansky, 1977). At meso-scales, which are much larger
than pore sizes but much smaller than the wavelength, due to heterogeneities such as variations in lithology
and porosity, internal fluid flow occurs from the more compliant high-pressure regions to the relatively stiff
low-pressure regions.

It has been recognized that, while Biot’s theory of poroelasticity (Biot, 1956a,b, 1962) very well describes
the effects of macroscopic flow, it fails to address the effects of local (either microscopic or mesoscopic) fluid
flow on the acoustical behavior of porous media with local heterogeneities (Winkler, 1985; Gist, 1994). As a
consequence, much research has been devoted to extend or modify some aspects of Biot’s theory to account
for the effects of local fluid flow. Generally two approaches are taken to account for local fluid flow. The
first approach explicitly considers the spatial heterogeneities such as fine layering and inclusions (Gurevich
et al., 1997, 1998); the second approach considers viscoelasticity associated with local fluid pressure diffu-
sion in different ways as described below.

Traditionally, the viscoporoelastic behavior related to microscopic flow was investigated by examining
the fluid flow in an individual crack (Mavko and Nur, 1975; O’Connell and Budiansky, 1977), or in a grain
contact area (Murphy et al., 1986). The effective material properties derived from these procedures depend
upon the details of microstructure that are difficult to quantify. More recently, an effective way of analyzing
microscopic flow was adopted by Dvorkin and Nur (1993), Dvorkin et al. (1995). In this procedure, micro-
scopic apertures such as microcracks and grain contacts are taken to be crack-like compliant pores, which
are assumed to be arranged perpendicular to the direction of compression. Fluid flow inside the crack-like
pores is then characterized and incorporated into Biot’s theory. Interestingly, Dvorkin et al. (1995) showed
that the viscoelasticity induced by microscopic flow can be characterized using a frequency-independent
parameter Z, which indeed is the square root of the characteristic time of microscopic flow. This approach
does not, however, consider mesoscopic fluid flow.

In an attempt to address mesoscopic fluid flow in fully saturated rocks, Pride and Berryman (2003a,b)
and Pride et al. (2004) have developed a double-porosity theory in which the material is viewed as a
composite of two isotropic porous solids. One of the essential components of this theory is the dynamic
evolution equation controlling the internal fluid transfer between the two porous phases. In this con-
text, the effective properties characterizing the overall viscoelastic behavior of the composite are
expressed as functions of the properties of individual constituents and the characteristic size of the
embedding solid phase. The complexity of this theory is likely to increase drastically with increasing
heterogeneity.

Here, we provide an alternative procedure to characterize the effects of local fluid flow on the acoustical
behavior of fully saturated porous media. Our procedure is formulated within the framework of the theory
of Biot’s poroelasticity (Biot, 1962), but based on volume averaging of microscopic equations. In contrast to
previous theories, the proposed procedure makes no assumption on the local structure of heterogeneities con-
trolling local fluid flow, and the corresponding material properties can be easily obtained. The essential step
in our derivations is to characterize the effect of local fluid flow by the notion of the dynamic compatibility
condition on the interface between the solid and the fluid (Wei and Muraleetharan, 2002a). Information on
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the details of local heterogeneity is shown to be collectively stored in the relaxation time of the dynamic com-
patibility condition.

The paper is separated into two parts. The first part deals with constitutive equations and material prop-
erties, where the complex, frequency-dependent material properties characterizing the viscoelasticity due to
local fluid flow are evaluated. In the second part, the new model is applied to describe the acoustical veloc-
ity dispersion and attenuation, from which the information on the local structures of heterogeneities is ex-
tracted. In Section 2, a continuum theory of porous media is first introduced, where energy dissipation
induced by pore fluid flow is analyzed, and the dynamic compatibility condition on the interface between
solid and fluid is introduced. In Section 3, linear constitutive equations are developed within the framework
of Biot’s theory of poroelasticity; and complex, frequency-dependent material parameters are derived. In
Section 4, various relationships among quasi-static poroelastic parameters are developed, and the condition
of local homogeneity is discussed. In Section 5, the relaxation time of the dynamic compatibility condition
is developed from the micromechanics point of view. In Section 6, the seismic dispersion equation is pre-
sented. In Section 7, effects of the relaxation time on the acoustical behavior of porous media are discussed
through numerical examples. In Section 8, the new model is applied to describe the measured acoustical
velocity dispersion and attenuation of fluid-saturated porous rocks.

2. Theory

The theoretical developments given below follow a macroscopic approach. Hence, unless otherwise spec-
ified, all variables are macroscopic quantities. Macroscopic balance equations and state variables are ob-
tained by averaging their microscopic counterparts over an averaging volume (see, for example,
Hassanizadeh and Gray, 1979a,b). In this paper, a porous medium is viewed as a macroscopically isotropic,
homogeneous porous continuum, which is a superposition of a solid matrix (S) and a pore fluid (W).

2.1. The effective volume fraction of the pore fluid

Under fully saturated conditions, the volume fraction n" of pore fluid is usually assumed to be equal to
the porosity of a porous medium. In a porous medium with local heterogeneities such as different porous
phase inclusions, microscopic grain cracks, and broken grain-to-grain contacts (see Fig. 1), however, the
meaning of the fluid volume fraction is quite subtle. The behavior of the fluid in the pore space of the local
heterogeneities is different from that of the fluid in the surrounding pores, though these two parts of pore
fluid can exchange mass. To distinguish these two regions of pore fluid, we generalize the concepts of stiff
porosity and soft porosity originally proposed by Dvorkin et al. (1995). Here the soft porosity #y, is defined
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Fig. 1. Local heterogeneities in porous media: (a) mesoscopic heterogeneity; (b) microscopic heterogeneity.
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as the ratio of the volume of the pore fluid trapped in the local heterogeneities to the total volume of the
porous medium, while the stiff porosity ng is the ratio of the volume of the remainder of pore fluid to
the total volume of the porous medium. Therefore, the total porosity # is equal to the sum of ny and n,.

In the following, n" is unambiguously designated as same as the stiff porosity ny and it is called the effec-
tive volume fraction of the pore fluid. It is assumed that the soft porosity is much smaller than the rigid one
so that the latter is very close to the total porosity 7 (i.e., n" = ny ~ n). This assumption is reasonable for
many porous rocks (e.g., Mavko and Jizba, 1991). The small portion of pore fluid trapped in the soft pores
is considered as a part of the solid constituent. It is important to note that the use of the effective volume
fraction has an important implication in the theory developed here.

To further explore this idea, consider a special case where the solid matrix is rigid, i.e., the total porosity
is a constant, and the pore pressure is subjected to an alteration. Due to the fluid pressure imbalance be-
tween the local heterogeneities and the surrounding pore space, fluid mass exchange (i.e., local fluid flow)
between these two regions will take place. This implies that the effective volume fraction n" is subjected to
change (though very slightly!) and the change of n" is independent of the skeletal deformation and the com-
pression of solid grains (since 7 is constant). It is clear that the actual amount of n"V depends on the fre-
quency of the fluid pressure alteration. Under static conditions (i.e., in the low-frequency limit), n"
becomes the maximum, since maximum amount of fluid mass will be exchanged between the two bodies
of fluid. In the high-frequency limit, #* is the minimum, since no mass exchange occurs.

From what is discussed above, in modeling deformable porous media, the effective volume fraction n"
must be generally viewed as an independent state variable that accounts for the mass exchange between the
pore space of the local heterogeneities and the surrounding pores. This is one of the distinguished features
of the theory developed in this paper.

2.2. State equations

To derive the constitutive equations for a porous media, we shall first establish the state equations of the
solid constituent and the pore fluid. These equations have been developed previously by the authors based
upon a continuum theory of mixtures with interfaces (Muraleetharan and Wei, 1999; Wei and Muraleeth-
aran, 2002a,b), and will be summarized here.

From the standpoint of the mixture theory of porous media, the total stress tensor ¢ of a porous material
can be partitioned into:

o =n% —n"p“1 (1)

where 1 is the second-order symmetric identity tensor with components represented by Kronecker delta d,;;
nS is the effective volume fraction of the solid and related to n" or n through n® = 1 — n"%V (=1 — n); 6% is the
intrinsic stress tensor of the solid phase; p% is the pore fluid pressure.

The state equations are given by

048
O'S — pS g _ S] (2)
048 o4V
P = (ps)z—aps , PV = (pw)z—apw (3)

where ¢ is the infinitesimal strain tensor of the solid matrix; 45 and AY are the free energy densities (per unit
mass) of the solid constituent and the fluid, respectively. Eq. (2) implies that the intrinsic stress tensor 6> of
the solid constituent has two contributions: one is related to the skeletal deformation (¢), and the other (de-
noted as p®) is associated with the compression of the solid material (the compression of the solid material is
represented by its mass density p%). It is noted that the two contributions of ¢° are generally coupled. The
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standard solid mechanics sign convention, i.e., tensile stresses and strains are positive, is used here and
through out the paper.
The free energy densities are assumed to be given by the following functions:

A5 = A5z, p%) “)

AV =A%, pY) = U@™) + H(p") (5)

where p" is the mass density of the fluid. State equations similar to (2) and (3) had been derived by
Berryman and Thigpen (1985) based on the variational principle. In this paper, however, in order to
account for the local fluid flow as described in Section 2.1, the free energy of pore fluid is assumed to
depend explicitly on % in addition to p%.

2.3. Energy dissipation induced by fluid flow
Given state equations (2) and (3) and with assumptions (4) and (5), the rate of energy dissipation due to
pressure relaxation and fluid flow can be expressed as (Wei and Muraleetharan, 2002a)
E=maV -7 (W) =0 (6)

where 7% is the rate of change of the effective volume fraction; > and »% are the velocities of the solid and
the fluid, respectively; 7 is the drag force induced by the fluid flow with respect to the solid matrix; IT is the
unbalanced pressure difference given by

o=pY-p*— Y -pd), (7)
Here
04V
(PW —Ps)eq = anWGn—W (8)

is the pressure difference at equilibrium. As discussed below, the first term in the right-hand side of Eq. (6)
represents the rate of energy dissipation due to local fluid-pressure relaxation (i.e., local fluid flow), while
the second term is induced by macroscopic fluid flow.

To understand these two processes of energy dissipation, we shall first analyze the micro-interactions
within an averaging volume of the porous medium (Fig. 1a). The size of the averaging volume is assumed
to be comparable to the wavelength of concern. At microscopic (pore) scales, when the pore fluid moves
with respect to the solid grains, a viscous boundary layer begins to develop in the pores and microscopic
viscous forces will be generated, acting on the direction tangential to the grain boundaries. In the directions
normal to the grain boundaries, the pressure compatibility condition requires that the microscopic pressure
pS of the solid grain be equal to that of the pore fluid (i.e., pY¥). These two types of microscopic interactions
can be linked to two types of macroscopic interactions as discussed below.

Suppose that a stress wave passes through a porous medium. Then a pressure gradient will be generated
between the peak and trough of the stress wave, leading to macroscopic (wavelength-scale) fluid flow across
the averaging volume. As discussed above, due to the movement of the pore fluid with respect to the solid, a
viscous boundary layer begins to develop in the pores if the frequency is larger than a certain value. This
kind of viscous drag forces results in wave energy dissipation. The frequency for the onset of the viscous
boundary layer is known to be approximately equal to the characteristic frequency wg at which maximum
energy dissipation occurs due to macroscopic fluid flow (Johnson et al., 1987). It is therefore suggested that
the microscopic viscous drag forces acting tangentially on the solid grain boundaries are induced by mac-
roscopic fluid flow. At macroscopic level, these drag forces can be collectively represented by 7 in Eq. (6),
and can be characterized using Biot’s theory (Biot, 1956a,b). The characteristic angular frequency of
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macroscopic flow is approximately given by wg ~ nnw/(p'Vk), where nw the dynamic viscosity of the fluid,
and k the permeability.

Now consider the macroscopic pressures of the solid and the fluid constituents in the averaging volume
introduced above. Because of the pressure compatibility, some sort of pressure balance exists between the
solid constituent and the fluid. This pressure compatibility can be represented by Eq. (8), which is the mac-
roscopic counterpart of the microscopic pressure compatibility condition on the solid boundaries. When a
stress wave passes through the porous medium, due to the fluid mass exchange (i.e., local fluid flow) be-
tween the local heterogeneities and the surrounding pores, the pressures of the solid and the fluid will be
redistributed over the averaging volume. The pressure redistribution can be considered as a relaxation pro-
cess that is governed by the local fluid flow, either microscopic or mesoscopic, depending on the frequency
of the stress wave. As a consequence, the pressure difference (p"V — p®) is generally a rate-dependent quan-
tity. Its magnitude depends on the frequency. At the low-frequency limit, local pressure-diffusion processes
will be completed within the half the period of the stress wave and no pressure imbalance will be generated
in the averaging volume. In general, however, local pressure imbalance will exist in the averaging volume,
and local pressure-relaxation processes will take place. These relaxation processes can attenuate wave en-
ergy as represented by the first term in the right-side of Eq. (6).

Assume that energy dissipation follows a linear law. As a first approximation and for isotropic porous
media, it is assumed based on Eq. (6) that

T=—uV =%, I =V 9)
where p and { are positive material coefficients. For the fluid flow of Poiseiulle type, u is given by
W2
nt)n
p= (10)

In practice, however, the assumption of Poiseiulle flow is not always valid. Rather, coefficient u depends
generally upon frequency and the microstructure inside the pores (Biot, 1956b; Johnson et al., 1987). Be-
cause our main objective is to address the effects of local fluid flow, it is assumed for convenience that
the pore fluid obeys Poiseiulle flow and Eq. (10) applies. Also, it is assumed that { is independent of fre-
quency. Now the pressure difference (p% — p%) is given by

P ==V =P + Y (11)

Eq. (11) can be considered as the macroscopic counterpart of the dyramic compatibility condition on the
solid grain boundaries. This equation will play a key role in the following derivations.

3. Linear constitutive equations
3.1. Linearization of the theory

Assume that the porous medium under consideration is initially at an equilibrium state, which is char-
acterized by state parameters: n3, ny, pj, py and ug. Here 5 is the initial displacement of the solid matrix.
Under a small disturbance, the state parameters are changed by An%, ApS, Ap¥ and Au®, where A() repre-
sents the incremental value of a quantity. To derive linear constitutive equations, it is sufficient to assume
the following quadratic forms for free energy density functions:

1 A
nSpsA4S = —nOAs(D Ag) + n3 —As 1+2 OKS< L ) (12)
I I

1 A 1
n, p(\)VAAW 3 N KW< p%’ ) E@W(Anw)2 (13)
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where 1A', Ks, Kw and @y, are material constants; for isotropic porous media, D is a fourth-order tensor
with components given by Asd;0x; + ps(0x0; + 640,)/2, where As and pg are material constants.
The linear counterparts of state equations (2) and (3) can now be written as

A S
A6S = (Js — ) (Ae : 1) + 2ugAe — (Ks — /) p—psl (14)
0
A S
ApS = J'Ae: 1+ Ks—5 (15)
Po
\\%
A = Ko (16)
Po

and Eq. (8) becomes
(AP — ApS),, = OwAnY (17)

Clearly, parameters Ks and Ky are the effective bulk moduli of the solid material and the fluid, respec-
tively. Constant A’ characterizes the coupling effects between the compression of solid material and the
deformation of solid matrix. Constant O is the change in pressure difference (p% — p®) solely due to a unit
change in #" under static conditions. For later reference, the linear mass balance equation of c-phase
(c=S, W) is introduced as

Ap©

Po

C
ny

+ AR+ nEV - (M) =0 (18)

3.2. Quasi-static response

Under quasi-static (low-frequency) conditions, no local unbalanced pressure is generated in the porous
medium as discussed above. In this case, II = 0, and the time-dependent behavior of porous media is solely
due to macroscopic fluid diffusion. Displacement fields #° and «" are chosen as independent state variables.
By eliminating Ap® and An® (¢ =S, W) from (14)—(18), it follows after some manipulations that

niAe® = [AAe: 1+ OV - (AuV)]1 + 2GAe (19)
nYApY = —QAe: 1 — RV - (AuY) (20)

where G(= n(s) Ug) is the shear modulus of the porous matrix; coefficients 4, Q, and R are related to Ks, Ky,
/s, Us, 2/, and Ow as below:

2 . (n§)’(Ks — X)’(Kw + n) Ow)

A=K -G+ 21
(my')’Kw(Ks + 5 Ow) (23)

and

~ 2 nS())?
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For the purpose of comparison, the notations of Biot (1956a) are used here for the elastic parameters. One
can observe from Egs. (19) and (20) that for fully saturated isotropic porous media, there are four indepen-
dent material parameters, i.e., 4, O, R, and G, which have to be determined.

The fluid mass content m" can also be introduced as a state variable. Note that

Am™
o = -V [ny (Au" — Au®)] (25)
0

where Am"Y /p¥ represents the volume of the fluid entering the pores in a unit volume of bulk material. With
Egs. (1), (19) and (20), one can derive:

2 AmW
Ao = |:<KU_§G)A8:I_O‘BM ;?V]I+2GA8 (26)
0
w
ApY = M<—ocBA£:I—|—A}:\1,v ) (27)
0

where Ky is the undrained bulk modulus of the porous material, M the fluid storage coefficient, and og the
effective stress coefficient. Parameters M and «p are given by

=04 0 (28)

=1- 29
aB (Ks + g Ow) @)
Eliminating Am" /py¥ from Egs. (26) and (27) yields
2
where Kp is the drained bulk modulus and given by
~ 1 1
Kp=Ky—Moid =K +n(Ks— ) |————— 1
p = Ky — Moy = K + n(Ks — 4) [Ks Ks T 50y (31)

Clearly, Kp equals K when O vanishes. As shown in Section 4.2, this is the case when porous media are
locally homogeneous.

In the constitutive relationships presented above, there are six elastic parameters, i.e., Ks, Kw, 4s, us, 4’
and O. Although the static behavior of saturated porous materials can be fully characterized by using
only four independent poroelastic parameters, e.g., G, Ky, M and op, we shall show later that these six
parameters play a key role in evaluating the dynamic properties of porous media.

3.3. Dynamic response

In general, free fluid filtration is locally prohibited in the pore space of local heterogeneities such as mi-
cro-cracks and broken grain contacts. When the characteristic time of local fluid-pressure relaxation is com-
parable to or larger than the characteristic time of loading the effect of the local pressure relaxation in local
heterogeneities becomes significant. As a consequence, the porous medium as whole behaves as a viscoelas-
tic solid, and its macroscopic behavior is frequency-dependent.

By virtue of Eq. (17), the linear form of Eq. (11) can be written as

ApY — Ap® = Ow(An™ + twA™) (32)
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where tw (={/Ow) is the relaxation time of local fluid pressure. To derive the complex, frequency-depen-

dent parameters that characterize viscoporoelasticity, one assumes that all state variables have e '’ time
dependence. Eq. (32) now becomes

ApY — ApS = Oy (1 — iwty)AnY (33)
where o is the angular frequency and i* = —1. This equations implies that pressure difference change

(ApY — Ap®) is frequency-dependent as discussed in Section 2.3.

Based on the principle of correspondence (Biot, 1962), one can derive the linear constitutive equations
similar to those given in Section 3.2 (i.e., Egs.(19), (20), (26), (27) and (30)). Now the material parameters in
the constitutive equations are complex and frequency-dependent. The only difference between the quasi-sta-
tic and dynamic model presented above exists in Eq. (33). By comparing (33) to (17), it is clear that the
complex material parameters can be obtained by replacing O for @w(1 — iwtw) in their quasi-static coun-
terparts. For instance, corresponding to (28), (29) and (31), one can write:

1 ny ny
R S— (34)
M (0)) Ks —+ n()@w(l — ICL)‘L'w) KW
S[/ 1 S :
N ny[A + njOw(l — iwtw)]
= -_ " 35
() [Ks + m30w(l — ioty)] (35)
- ~ - S(Ks— ) nS(Ks — X
g — M2+ R ny (K _ 0\As
u(w) =Mt + K + Ks Ks + n30w(l — ioty) (36)

where quantities with a caret “~” are complex numbers.

Compared to the quasi-static poroelastic model discussed in Section 3.2, viscoporoelastic model depends
upon an additional material parameter, i.c., the relaxation time tvw. As discussed in Section 5, the parameter
Tw 1s a function of the local structure of porous media that controls local fluid flow. In the model presented
here the frequency-dependent behavior of a porous material is taken into account only through Eq. (33).
Constants Ks, Kw, As, us, 4, O@w and 1w are assumed to be independent of frequency.

4. Quasi-static poroelastic parameters

To determine the complex, frequency-dependent material properties, one must first evaluate parameters
Ks, Ky, s, ts, 4', Ow and 1. Suppose that the effective bulk moduli of the solid material and the fluid, i.e.,
Kg and Ky, are known, and ug is obtained by measuring the shear modulus G of the porous medium. Next
we will evaluate Ag, 2/ and @w. Because these elastic constants are independent of frequency, they can be
determined under quasi-static conditions (w ~ 0). To this end, compression tests can be conducted to mea-
sure three quasi-static poroelastic parameters such as the drained and undrained bulk moduli of the porous
medium. These tests include undrained compression, drained compression, and unjacketed compression
tests (Kiimpel, 1991).

4.1. Porous media with local heterogeneities

First consider a porous medium with local heterogeneities. Through compression tests, one can measure
poroelastic parameters including undrained bulk modulus Ky, drain bulk modulus Kp, pore pressure coef-
ficient B and effective stress coefficient ap, as well as the pore compressibility C, and the unjacketed com-
pressibility Cg (or unjacketed bulk modulus K of the solid matrix). The latter two are defined by
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1 (6V,,> 1 1 ( 4 )
Cn:__ ) C*:_*:__ P (37)
Vi \op% ) , _pw 5K VAN

where V and V,, are the total and pore volumes, respectively, in an averaging volume of the porous medium;
Pe 1s the confining (or total) pressure. Lade and de Boer (1997) introduced two other compressibility param-
eters, defined by

.1 (ovs .1 (v
a=-5 (o), = nlm), o

where Vs is the volume of the solid material. Here, pq (=p. — p") is the intergranular pressure. Parameters
Cg and Cg represent the compressibility of the solid material due to changes in p% and py, respectively.

Next, we shall show that generally there are three independent parameters among those measured
through the above-mentioned compression tests, provided that the fluid bulk modulus Ky is known. From
the definitions of C,, Cg and Cyg, it immediately follows that

u 1 *
e = Licy-nycy) 9
U
Also, one can write
Cd = ¢ (40)
To derive expression (40), one can first use (14)—(17) to obtain
S 2 S Syl 4 S Ap®
Apy = —ny ls—f—g,us—kno@w Ag: 1 —ny(A +n0@W)F (41)
0
W S S Ap®
Ap = (/L + no@w)AS o1 + (Ks + I’logw)? (42)
0

Using the definitions and noting that AV/V = Ae:l, AVs/Vs = —ApS/p, and Vs/V = nj, one derives:

Cp = 7 (43)
S(3 4 8
cy= ¢y = "ML IiOv) (44)
cu = ny(4s + 2us/3 + n5Ow) 5)
b4
where Cp (=1/Kp) is the drained compressibility of the solid matrix, and
W = ny[(4s + 2us/3 + myOw) (Ks + nyOw) — (2 + i Ow)’] (46)

Lade and de Boer (1997) measured compressibility parameters Cp, Cg, Cg and Cg for an artificial porous
material (i.e., Basswood cubes) subjected to various confining pressures. Lade and de Boer’s (1997) results
are reproduced in Fig. 2. It can be seen that all the values of Cg are very close to those of Cg for all the
confining pressures.

By using (43) and (44), the effective stress coefficient (29) becomes:
Cs
Cp
It is important to note that thus far no restriction has been made on the local structure in porous
media. Hence, Eq. (47) is generally valid for isotropic porous media. Nur and Byerlee (1971) obtained

O(BZI—

(47)
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Fig. 2. Compressibility parameters for Basswood cubes subjected to various confining pressures (after Lade and de Boer, 1997).

an expression similar to (47). In their formulation, however, it was assumed that the porous medium of
concern is locally homogeneous.

Using (26) and (27), in undrained conditions (i.e., Am" = 0), one obtains:

Mag (Ao : 1
ApY = ——= 48
P Ky ( 3 ) 48)
With its very definition, the pore pressure coefficient B is given by
M M
B— 08 _ 8 . (49)
KU KD + MOCB

This is a well-known result in poromechanics (e.g., Coussy, 1995, p. 102). Using (28), (29), (31), (43)—(45)
and (49), one can further derive:

1 1
B = W = (50)
Y Cyw+nSCY—C% W (Cw—C)
1 . chc;S : 1 OcD—cg

where Cyw (=1/Kw) is the fluid compressibility. An alternative way to derive Eq. (50) can be found in
Berryman (2002).
It can be deduced from Egs. (39) and (43)—(45) that
S
n
Y= 0 51
CD(OCBCg — I’lOWCn) ( )
Now it follows from Eq. (43) that

S
1y

K SO = ———— 52
s+l’10 w OCBC;—}’IOWC” ( )
Using Eq. (52), one may cast Eq. (28) into:
1
i ny Cw + apCy — ny C, (53)

This is the most general expression for the fluid storage coefficient M, and hence it is valid for any fully
saturated isotropic porous media.
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It is now clear that because of (39), (40), (47), (49), (50) and (53), if Cy is determined, there are only three
independent parameters among Ky, B, Kp, ap, C,, Cs, M, Cg and Cg. With any three of these parameters
and if Kg, Kw and G are given, constants As, /' and® can be finally determined.

Noting that Ky = Kp + Moj and using Egs. (47) and (53), one obtains:

1 1 1

- 54
Co—C. Co_C; m¥(Cw—0Cy) (54)

where Cy (=1/Ky) is the undrained compressibility of the solid matrix. This relationship was first derived
by Brown and Korringa (1975), who made use of the reciprocity theorem of elasticity.

4.2. Locally homogeneous porous media

It is now instructive to discuss a special model first introduced by Gassmann (1951), in which the porous
medium is assumed to be composed of a solid matrix that is locally homogeneous. In such materials, the
strain components along any continuous path across the solid matrix are equal to those within the solid
material of the matrix. This assumption was extensively applied in poromechanics (Biot and Willis,
1957; Nur and Byerlee, 1971; Rice and Cleary, 1976).

Consider an averaging volume of a locally homogeneous porous medium that is fully saturated with a
liquid. Suppose that the material is unjacketed and subjected to a hydrostatic pressure increase A p.. The
porous material deforms in exact proportion everywhere in the averaging volume. One therefore expects
that the porosity will be constant, i.e. An = An™Y = 0. From Eq. (17), it follows that ApS = Ap™Y = Ap.. Also,
in the porous medium, there exist no local heterogeneities such as different soft porous inclusions, broken
grain contacts and microcracks; all the pores are interconnected and allow free fluid filtration. In this case,
the free energy of the fluid is independent of the porosity. By its very definition, @y vanishes.

Due to local homogeneity, ApS/pS = —Ae:1 and Ow=0. In an unjacketed compression test,
Apg = Ap. — Ap™Y = 0. Now it follows from Eq. (41) that

b, 2
)V = Ag +§ﬂs (55)

Using Egs. (39), (44) and (45), one can obtain:
C,=Cl=C8=Cy (56)
Since Ow = 0, Eq. (50) yields

1 ny 1
_ 1 RS 57
Ky (o —nY) Ks (57)

Cs

Noting that n)’ < op < 1, it is clear that C§ > Cs(= 1/Ks). Hence, Kj is generally less than the effective
bulk modulus Kg of the solid material in a porous medium. This discrepancy is apparently due to the cou-
pling between the compressions of the solid material and the matrix.

Applying Eq. (56) to Eq. (53), it immediately follows that

w w
1 ny ag—ng

M Kw K (58)
The well-known Gassmann (1951) equation follows simply by inserting (56) into (54):
1 B 1 1 (59)

* k + *
CU — CS CD — CS I’l(\)V(Cw — CS)
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Expressions (58) and (59) are valid only for the porous media that are locally homogeneous. In many
applications, however, porous media are heterogeneous, in which small portion of the fluid is trapped in
the soft pores such as grain microcracks and broken grain contacts so that free fluid filtration is prohibited
in these regions. In such cases, the effective volume fraction n* of the fluid may vary in a way discussed in
Section 2.1, and the free energy of the pore fluid depends upon n". By its definition, parameter Ow now
becomes a positive quantity. Therefore, constant O is the parameter that can be used to characterize
the local heterogeneity of fully saturated porous materials.

Eq. (56) is an additional constraint imposed by assuming local homogeneity, such that only two param-
eters are independent among Ky, B, Kp, ag, C,, Cg, M, Cg and Cg. This fact was first recognized a long time
back by Biot and Willis (1957), who pointed out that for homogeneous porous media, there are only three
independent poroelastic parameters including G, provided that Cy is known. In addition, for the porous
media that are locally homogeneous, since O is zero, the effects of local fluid on the poroviscoelastic
behavior are negligible. In this case, complex material properties presented in Section 3.3 are real numbers
and independent of frequency. This result can be used to explain the experimental observations that Biot’s
theory predicts very well the seismic response of synthetic porous media made from sintered glass beads,
whereas it fails to describe the seismic behavior of natural rocks (Winkler, 1985; Gist, 1994). The reason
is that the synthetic porous media are locally homogeneous, whereas the natural rocks generally have local
structure.

Because 4g > 0 and O > 0, using Eqgs. (28), (29) and (31), one obtains the following estimates for Kg:

T—op)| /1 A\ 1 2 1o\

S
Iy

5. Relaxation time of local fluid flow

Thus far, relaxation time 7w has not been evaluated. As described in Section 8, using a trial-and-error
procedure, one can determine tw by comparing the model predictions with the measured seismic data of
porous media. This method avoids characterizing the details of local structure of porous materials. In prac-
tice, however, it is extremely useful to obtain the information on the local structure of porous media. Let w,
be the characteristic angular frequency of local (microscopic or mesoscopic) fluid flow. Because the pressure
relaxation process is governed by local fluid flow, the relaxation time can be approximately written as
Tw ~ 21/ 0.

For microscopic flow in microscopic apertures, such as microcracks and broken grain contacts, there are
several formulations of w, available in the literature (O’Connell and Budiansky, 1977; Cleary, 1978; Mavko
and Nur, 1979). These formulations relate the characteristic frequency to a specific type of apertures asso-
ciated with the microscopic flow. In the following, microscopic apertures are treated as flat cylindrical cav-
ities in the solid phase. This kind of apertures can be used to simulate the broken grain contacts. Following
arguments of Johnston et al. (1979), one can obtain the relaxation time of the microscopic flow in flat cylin-
drical cavities as (see Appendix A):

3w
w 2Kwo!2 ( )
where « is the typical aspect ratio of the apertures and #y the viscosity of the fluid.
If the aspect ratio « is small, the fluid may be absorbed onto the surface of the solid materials and there
will be no free fluid that can flow in response to a seismic wave and produce attenuation. As pointed out by
Jones (1986), for natural rocks, if o < 10~%, fluid flow in the apertures make no contribution to energy dis-
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sipation. With this value of o and for water (Kw = 2.25 GPa, nw = 1 mPa s), it can be shown that Ty must
be less than 10~*s for the microscopic (squirt) flow dissipation to be active.

For mesoscopic flow, the relaxation time is given by tw ~ Efn /Dn, where £, is the characteristic size of
mesoscopic heterogeneity and D, is the meso-scale fluid-pressure diffusivity. To be meaningful, ¢, should
be much less than the wavelength and much larger than the pore size. Keeping in mind that mesoscopic flow
is driven by the local gradient of fluid pressure, a simple dimensional analysis yields

_ Mky _ Kwk

D, = ~
" Nw ”(\)N Nw

(62)

where k,, is the meso-scale permeability and, as a first approximation, it is assumed to equal the global per-
meability k. It follows that

W 2
~ ny ”ng

~ 63
W TRk (63)

Interestingly, for local fluid flow (either microscopic or mesoscopic), tw is proportional to #nw. That is,
characteristic frequency fy, (= 1/tw) of local fluid flow is proportional to (1/nw), which is in a sharp contrast
to the macroscopic flow. This result is, however, consistent with experimental observations (Winkler, 1985).

6. Dispersion equation of compressional waves

To apply the theory to analyze the acoustical behavior of porous media, we now develop the dispersion
equation of compressional waves. Because local flow mechanisms is of primary interest in this paper, the
frequency dependence of permeability coefficient and the inertial coupling effects in the sense of Biot
(1956a,b) will be neglected.

First the governing equations are presented in the following linear form:

2 2

0 0
V-a:pO@uS—i—py@w (64)
o? oY 0w O
o,V WY s Fo >~ L OW )2
VPT= b0 gt (nOW ot k)atw (65)

where w (= ny (1™ — u®)) is the filtration displacement such that the time rate of w represents the filtration
velocity of the fluid; #w the dynamic viscosity of the fluid; k£ the permeability; and p, is the total initial mass
density of the porous media and given by p, = ny py¥ + nip;.

The linear constitutive equations are given by

~ 2~ .
o= [(KU -3 G)V -’ + MV - w} 1+ GV + (V)" (66)
— PV =M@EpV -1+ VW) (67)
where complex parameters Ky, o and M are given by (34)—(36).
Inserting (66) into (64) and (67) into (65), and following a fairly standard procedure (Biot, 1956a), we
obtain the following dispersion equation of compressional waves:
(Ku+4G)C = po? Mzl = p¥o?

S 2 Y -
Magl” — pV? M - Lpo® + Wiw
0

=0 (68)
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where ( is the complex wave number with a real part (g and an imaginary part ;. The phase velocity v and
attenuation (i.e. the inverse quality factor) Q' of the compressional waves are defined, respectively, by:
o

(R
o =2

(R
Clearly, given a certain frequency, dispersion equation (68) has two meaningful solutions that correspond,
respectively, to the first (fast) and the second (slow) compressional waves.

v

(69)

(70)

7. Effects of the relaxation time

We now present numerical examples to illustrate the effects of relaxation time tyw on the compressional
waves propagating through fully saturated porous rocks. The material of concern is the D’Euville limestone
with a porosity of 0.18. The material properties of D’Euville limestone are summarized in Table 1.

The effects of relaxation time 7w on the frequency dependence of phase velocity and attenuation of the
first compressional (P1) wave are depicted in Fig. 3. For these calculations the properties of D’Euville lime-
stone corresponding to a confining pressure of 5 MPa were used (Table 1). The results for Biot’s model are
obtained by setting tw = 0 s. In contrast to Biot’s model, the new model predicts significant velocity disper-
sion and attenuation due to local fluid flow (tw # 0). For each 1w, two peaks can be seen in the frequency
dependence of attenuation: the first one is associated with the local fluid flow, and the second one is related
to the macroscopic flow (i.e., the Biot flow). An increase in Ty shifts the attenuation peak associated with
the local fluid flow (the peak on the left-hand side) to a lower frequency.

It is clear that the new model describes the energy dissipation due to both local fluid flow and macroscopic
fluid flow over a broad range of frequencies. In this example, when T is larger than 0.0001 s, mesoscopic
flow is the dominant loss mechanism. Indeed, if tw > 0.0001 s, a simple calculation using Eq. (61) yields
the typical aspect ratio of apertures as o < 8 x 107>, at which the effects of microscopic (squirt) flow become
trivial (Jones, 1986). If Tw > 0.0001 s, Eq. (63) yields £, > 1 cm. On the other hand, if 7w < 10 s, it follows
from (63) that £,, < 1 mm, which is comparable to the pore size. Hence, for tw < 10~® s microscopic (squirt)
flow will be dominant and for 107%s < tyw < 10™* s both micro-scale and meso-scale flows are active.

It can be seen from Fig. 4 that the local fluid flow has very slight influence on the velocity dispersion and
attenuation of the second compressional (P2) wave. This result is reasonable, since the slow wave is primar-

Table 1
Material properties of D’Euville limestone (after Lucet, 1989)
Parameter Symbol Confining pressure

3 MPa 5 MPa
Bulk modulus of solid, GPa Ks 62.0 62.0
Bulk modulus of water, GPa Kw 2.25 2.25
Density of solid, kg/m? pg 2710 2710
Density of water, kg/m? oy 1000 1000
Permeability, m> k 1.0x 10713 1.0x 1071
Viscosity of water, Pa.s nw 1.0x 1073 1.0x107?
Bulk modulus of matrix, GPa Kp 11.5 16.7
Shear modulus of matrix, GPa G 9.42 10.2
Effective stress coefficient® oB 0.75 0.70
Pore pressure coefficient® B 0.46 0.34

* op and B are estimated based on the equations provided in Section 4.
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Fig. 3. Influence of the relaxation time (tw) on the velocity and attenuation of the P1-wave in a fully saturated D’Euville limestone.

ily associated with the macroscopic motion of the saturating fluid. Hence, the geometry and tortuosity of
the pores become the factors influencing the P2-wave (Klimentos and McCann, 1988; Gist, 1994). Yet, it is
interesting to note that the velocity of the P2-wave predicted by the new model (7w # 0) is slightly higher
than that predicted by the Biot’s model in the high-frequency range. The reason for this phenomenon is that
the effects of local fluid flow are considered in the new model and not in the Biot’s model. At high frequen-
cies very little local fluid flow can occur and the fluid trapped in the local heterogeneities such as grain
microcracks and broken grain contacts move with the solid. This unrelaxed fluid within the local heteroge-
neities also makes the solid matrix more rigid with respect to the pore fluid. As demonstrated by Johnson
et al. (1982), when the solid matrix is much more rigid than the pore fluid, the velocity of slow wave in the
high-frequency range approaches v,, = vw/ VT, where vy is the velocity of compressional wave in the fluid
and T is the tortuosity of the pores. The new model captures this increase in the velocity of the P2-wave at
high frequencies due to the increase in the rigidity of the solid matrix caused by the unrelaxed pore fluid.

In practice, low-frequency acoustical measurements are difficult to obtain in rocks. Hence ultrasonic
measurements (e.g., at @ > wg) are usually extrapolated to explain the low-frequency seismic behavior of
porous media. Our numerical results, however, show that such an extrapolation must be done with caution.

8. Applications

Within the context of the proposed theory, relaxation time (tw) is the only parameter that stores the
information on the details of local structure of porous media. It can be determined based on the measured
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Fig. 4. Influence of the relaxation time (tw) on the velocity and attenuation of the P2-wave in a fully saturated D’Euville limestone.

seismic data. Such a feature endows the theory with great flexibility and capability in modeling the seismic
behavior of fully saturated porous media.

8.1. Velocity dispersion and attenuation in Berea sandstone

Winkler (1985) measured the seismic response of Berea sandstone samples saturated by different fluids
(brine and oil) and subjected to various confining pressures at a frequency of approximately 400 kHz. The
properties of the solid and fluid constituents are directly obtained from Winkler (1985). The poroelastic
parameters for various confining pressure are summarized in Tables 2 and 3. The dry velocities of the shear
and compressional waves measured by Winkler are used to calculate the shear modulus G and Kp. The
parameters ag and B are estimated based on the magnitude of the measured velocity dispersion and the
equations presented in Section 4.

The predicted pressure dependence of P1-wave velocity is compared with the measured values in Fig. 5.
The velocities predicted by Biot’s theory in the low-frequency limit and the high-frequency limit are also
given in Fig. 5. In both brine-saturated and oil-saturated cases, Biot’s theory underestimates the velocity.
The discrepancy becomes smaller with an increasing confining pressure. The reason here is that, as the con-
fining pressure increases, more and more microscopic apertures become closed and the effects of micro-
scopic fluid flow are reduced. This phenomenon is an important feature of porous rocks containing
microcracks or broken grain contacts (Mavko and Jizba, 1991). The values of the relaxation time (Tw)
are adjusted to match predictions with the measured data. The values of Ty are given within the parentheses
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Table 2

Poroelastic parameters of brine-saturated Berea sandstone

999

Parameter Symbol Confining pressure, MPa
5 10 20 40
Bulk modulus of matrix, GPa Kp 8.32 10.78 13.26 15.18
Shear modulus of matrix, GPa G 8.52 10.75 12.40 13.49
Effective stress coefficient oR 0.75 0.69 0.62 0.56
Pore pressure coefficient B 0.54 0.44 0.36 0.30
Table 3
Poroelastic parameters of oil-saturated Berea sandstone
Parameter Symbol Confining pressure, MPa
5 10 20 40
Bulk modulus of matrix, GPa Kp 8.30 11.21 14.10 15.76
Shear modulus of matrix, GPa G 8.69 10.96 12.54 13.63
Effective stress coefficient oR 0.75 0.69 0.62 0.56
Pore pressure coefficient B 0.48 0.38 0.30 0.25
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Fig. 5. Influence of the confining pressure on velocity of the P1-wave in fully saturated Berea sandstone: (a) brine-saturated; (b) oil-
saturated. The numbers in parentheses represent the values of the relaxation time (tw) in 10™*s. The measured data are obtained from

Winkler (1985).
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in Fig. 5. It can be seen that, in general, Tty increases as the confining pressure increases. This can be ex-
plained using Eq. (61). When the confining pressure increases, o decreases and Ty increases.

The predicted velocity dispersion of the P1-wave is described in Fig. 6. In both cases, the model predicts
significant influence of confining pressure on the velocity dispersion due to microscopic (squirt) flow. The
dispersion decreases with the increase in confining pressure and this can be attributed to the closure of
microcracks and grain contacts. Interestingly, in the brine-saturated samples the measured data points
are located in the frequency range between low and high limits, whereas in the oil-saturated samples the
data points are in the high-frequency limit. Because all other material properties are quite similar for both
types of samples, the difference is likely due to the viscosity #w of the saturating fluids. The oil has a vis-
cosity of 350 cp, which is two orders larger than that of brine (1 cp). As shown in Section 5, higher #w (i.e.,
larger tvw) shifts the characteristic frequency wy to a lower value.

The model predictions of the frequency dependence of attenuation are depicted in Fig. 7. When the con-
fining pressure increases, the solid matrix becomes stiffer due to the closure of some of microcracks and
grain contacts, resulting in decrease in the energy loss associated with the microscopic (squirt) fluid flow.
It is quite clear that model correctly predicts this trend. Unfortunately, the measured data on the intrinsic
attenuation (due to local fluid flow) are not available. By analyzing the total apparent attenuation and the
scattering effects, Winkler (1985) suggested that, in contrast to those in the brine-saturated samples where
much of the dispersive range lies above the measurement frequency (~400 kHz), the measured attenuations
in the oil-saturated samples are obtained in the high-frequency tail of the relaxation. Our model predictions
in Fig. 7 clearly justify this suggestion. This example shows that the proposed model can reasonably explain
the acoustical response of porous rocks saturated with different types of fluids.
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Fig. 6. Influence of the saturating fluid on velocity of the Pl-wave in fully saturated Berea sandstone: (a) brine-saturated; (b) oil-
saturated. The measured data are obtained from Winkler (1985).
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Fig. 7. Influence of the saturating fluid on attenuation of the P1-wave in fully saturated Berea sandstone: (a) brine-saturated; (b) oil
saturated.

In practice, it is sometimes assumed that the operating frequency of microscopic (squirt) flow is in the
high-frequency range. From this example, however, we should keep in mind that it is difficult to decide
whether microscopic flow or mesoscopic flow dominates the energy loss merely based upon the character-
istic frequency wy corresponding to local fluid flow. In some heavy-oil-bearing reservoirs, for instance,
microscopic (squirt) flow could operate within the seismic frequencies.

8.2. Attenuation in D’ Euville limestone

In this example, we shall calculate the attenuation based upon the measured velocity of the Pl1-wave in
D’Euville limestone subjected to various confining pressures. The material properties are summarized in
Table 1. The measured data on the velocity and attenuation are obtained from Lucet (1989) and presented
in Fig. 8. These measurements were made in the seismic and ultrasonic frequencies.

From the measurements, we can see that there is significant velocity dispersion in the limestone under
both confining pressures (3 and 5 MPa). The large magnitude of the measured attenuation implies that
the energy loss could be attributed to local fluid flow. Indeed, the characteristic frequency wg of macro-
scopic flow is about 2 MHz, which is above the range of measurement frequencies. In order to determine
the attenuation, we choose the value of 1w such that the predicted velocities fit the measured data points.
This yielded a value of 7w ~ 1.2 x 10> s for a confining pressure of 5 MPa, and tw ~ 8 x 10~ s for a con-
fining pressure of 3 MPa. Note that the rock sample subjected to a larger confining pressure has a larger T,
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Fig. 8. (a) Velocity dispersion and (b) attenuation of the Pl-wave in fully saturated D’Euville limestone at two different confining
pressures. The measured data are obtained from Lucet (1989).

which is reasonable as explained in Section 8.1. In both cases, the magnitudes of predicted attenuations are
comparable to the measured values, implying that the predicted results are reasonable.

In the above given calculations, no information on the details of the local structure are necessary. As
shown the value of 7w can be determined based on the measured seismic data. The value Ty can be used
to extract useful information about the local structure of the porous medium. If we assume that the micro-
scopic apertures in the porous material are represented by cylindrical cavities, using Eq. (61), we can cal-
culate the aspect ratio of these apertures as o = 2.4 x 10~* for 5 MPa, and o = 2.9 x 10~ for 3 MPa.

8.3. Effects of mesoscopic fluid flow

Several investigations in the laboratory have shown that significant dispersion and attenuation may
occur at frequencies lower than 1 kHz (Spencer, 1981; Paffenholz and Burkhardt, 1989). It is believed that
this phenomenon is due to radial fluid flow caused by the size limit of the samples, i.e., the so-called Biot—
Gardner effect (Gardner, 1962; White, 1986). Because the sizes of the samples are much smaller than the
wavelength and much larger than the pore size, the Biot-Gardner effect can be considered as some sort
of mesoscopic fluid flow.

The frequency dependence of velocity dispersion and attenuation in the fully saturated Dolomite are
shown in Fig. 9. The properties of Dolomite are summarized in Table 4. The data points are calculated
from the measured Young modulus, Poisson ratio and attenuations of extensional and shear waves
(Paffenholz and Burkhardt, 1989). The theoretical predictions (the solid line) agree very well with the exper-
imental data for tw = 0.1 s. Such a magnitude of 7y excludes microscopic (squirt) flow from being the
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Fig. 9. (a) Velocity dispersion and (b) attenuation of the Pl-wave in fully saturated Dolomite. The measured data (solid stars) are
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Table 4

Material properties of saturated Dolomite (Paffenholz and Burkhardt, 1989)

Parameter Symbol Value
Porosity n 0.218
Bulk modulus of solid, GPa Ks 37.0
Bulk modulus of water, GPa Kw 2.25
Density of solid, kg/m? oS 2833
Density of water, kg/m? oV 1000
Viscosity of water, Pas nw 0.001
Permeability, m? k 1.1x10716
Bulk modulus of matrix, GPa Kp 13.7
Poisson ratio VD 0.18
Effective stress coefficient® o 0.67
Pore pressure coefficient® B 0.33

% ap and B are estimated based on the equations presented in Section 4.

dominant loss mechanism, since the corresponding aspect ratio o (2.6 x 10~°) is too small for microscopic
(squirt) flow to be significant (Jones, 1986). On the other hand, using Eq. (63), we estimate the characteristic
length of mesoscopic flow as £, ~ 1.1 cm, which is comparable to the diameter of the samples (5 cm). These
calculations show that the new model can be used to describe the Biot—Gardner effect (Gardner, 1962;

White, 1986).
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8.4. Bulk attenuation in fully saturated Harz quartzite

It can be seen from Fig. 10 that there are two peaks in the frequency dependence of the bulk attenuation
Ok (=1m(Ky)/re(Ky)) in the fully saturated Harz quartzite: one is at around 0.03 Hz, and the other is at
1.5 kHz. The data points are calculated from the measured attenuations le and Qg ! of extensional and
shear waves (Paffenholz and Burkhardt, 1989). The model predicts that the peak at the lower frequency
corresponds to Tw = 250 s, while at the higher frequency corresponds to Tw ~ 2 x 10~%s. A simple calcu-
lation shows that the attenuation peak at high frequency can be attributed to microscopic (squirt) flow.
Eq. (61) gives an estimate of aspect ratio of apertures as o ~ 6 x 10~*. This value of aspect ratio is reason-
able for low-porosity quartzite rocks. In contrast, the attenuation peak at 0.03 Hz must be induced by mes-
oscopic flow. Using (63) the characteristic length of mesoscopic heterogeneity can be calculated as
lm ~ 12 cm. This quantity is two times larger than the diameter (5 cm) of the specimens used in the exper-
iment. Such a low-frequency attenuation peak can be attributed to the so-called Biot—-Gardner—White effect
that is induced by the mesoscopic fluid flow.

Attenuation measurements were recently performed over a broad range of frequencies at a single geo-
logical sequence of rocks (Sams et al., 1997). It was found that the peak of the frequency dependence of
attenuation rests in the seismic frequency range. Pride et al. (2003) reanalyzed Sams et al.’s data and implied
that the attenuation could be induced by mesoscopic flow. Unfortunately, the properties of relevant mate-
rials are not available. It is reasonable to expect the procedure proposed in this paper will also apply to
Sams et al.’s data.

8.5. Summary and conclusions

When compressional waves propagate through porous media with local (either microscopic or meso-
scopic) heterogeneities, internal pore fluid flow can take place at micro-, meso- and macro-scales. A linear
dynamic model of fully saturated porous media with local heterogeneities is developed within the context of
Biot’s theory of poroelasticity, but based on volume averaging of microscopic equations. The effects of local
fluid flow are taken into account by the notion of the dynamic compatibility condition on the interface be-
tween the solid material and the fluid.

Complex, frequency-dependent material properties, characterizing the viscoelastic behavior associated
with local fluid flow, are derived. The complex material properties are obtained by determining the

80 T T T T T T

* 1=0.002 ms

-3 -2 -1 0 1 2 3 4
Frequency [log(Hz)]

Fig. 10. Bulk attenuation le of the fully saturated Harz quartzite. Data points are calculated from the measured le and Og !
(Paffenholz and Burkhardt, 1989).
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quasi-static poroelastic parameters, the properties of individual constituents, and the relaxation time of the
dynamic compatibility condition on the interface. In developing the relationships among various quasi-
static poroelastic properties, we show that, as far as homogeneous porous materials are concerned,
there are only three independent poroelastic parameters, and the effects of the local fluid flow on the
viscoporoelastic behavior are negligible.

Theoretical predictions are compared with the measured acoustical data available in the literature. It is
found that the model describes very well the acoustical behavior of porous media with local fluid flow over
a wide range of frequencies. The proposed model provides a theoretical framework to simulate the acous-
tical behavior of fully saturated porous media without making any explicit assumption about the structure
of local heterogeneities. The back calculated relaxation time of the dynamic compatibility condition on the
interface can, however, provide insight into the nature of these local heterogeneities.
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Appendix A. Relaxation time of microscopic fluid flow from a broken grain contact

When a compressional wave propagates through porous media, fluid flow takes place in microscopic
apertures such as microcracks and broken grain contacts. Here microscopic apertures are treated as thin,
open-edged cylindrical cavities (see Fig. 11), which can be viewed as the simple representations of broken
contacts between solid grains. A typical cylindrical cavity has a diameter of 2¢ and a thickness of 24, i.¢., the
aspect ratio o = h/¢. The total porosity n has two contributions: one is from the apertures and the other
from the nearby pore space storing free fluid. In the notion of Dvorkin et al. (1995), the microscopic aper-
tures are denoted as soft pores, with a porosity ng,, and the nearby pores are rigid pores, with a porosity ny.
It is assumed that ny, < n.

The derivation of the relaxation time of fluid pressure in microscopic apertures essentially follows the
procedure by Leuer (1997) and originally proposed by Johnston et al. (1979). The fluid pressure p% and
the volume change of the fluid induced by a passing compressional wave are

p:z = _Kwesov Pylv = _KWQri (Al)
and
ACvso = Csogsoa ACri = Crigri (A2)

where K is the bulk modulus, 6 is the dilation, and C is the volume concentration.

Rigid pore Soft pore

(@ (b)

Fig. 11. Schematics of a broken grain contact in a porous medium: (a) broken grain contact; (b) geometric representation.
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After the fluid pressure in the soft pores is totally relaxed, the fluid pressure will equilibrate between the
soft pores and rigid pores. Let the equalized fluid pressures be pV. The dilation of the fluid is 0 = —p" /K.
The total fluid volume displaced to equalize the pressure is given by

Vi=ACy, — ACy, = AC; — ACy; (A.3)
where ACy, = Cyo0 and AC,; = C,;0. It follows from (A.3) that
— &by + 0
0= SO ri A4
l+e¢ (A.4)
where ¢ is the volumetric ratio of soft pores to rigid pore. Now, one obtains
0;— 06
V. — i ) A5
= o (AS)

On the other hand, the average velocity w of the flow in the fluid layer between two plates separated by a
small distance 24, induced by a pressure gradient dp/dx, is given by (Landau and Lifschitz, 1991)
_ K dp
T 3y dr
Hence, the flow rate of the fluid around the edge of the cavity is ¢gg=wA = (4nhf)w. Setting
dp/dx = (p¥¥ — p¥)/¢ and using (A.1), one obtains
TEhSKW
3w

Assuming the flow rate has a time dependence of gyexp(—#/tw), the total fluid volume displaced can be
expressed by

Vo= / (qoe™/™) dt = gytw (A-8)
0

Noting that Cy, = 27¢*h and using (A.5) and (A.8), one derives

(A.6)

2

qo ~ (Gri - 050) (A7)

3w
= A.9
w 2Kwao? (1 + &) (A9)
Note that ¢ is a very small quantity, i.e. ¢ < 1. Hence, one obtains Eq. (61).
More realistically, microscopic apertures have a distribution of aspect ratio a,,. In this paper, for the
sake of simplicity, we will not consider such a distribution. Instead, a typical single aspect ratio « is assumed
for the apertures.
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