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Abstract

A linear dynamic model of fully saturated porous media with local (either microscopic or mesoscopic) heterogene-
ities is developed within the context of Biot�s theory of poroelasticity. Viscoporoelastic behavior associated with local
fluid flow is characterized by the notion of the dynamic compatibility condition on the interface between the solid and
the fluid. Complex, frequency-dependent material parameters characterizing the viscoporoelasticity are derived. The
complex properties can be obtained through determining the quasi-static poroelastic parameters, the properties of indi-
vidual constituents, and the relaxation time of the dynamic compatibility condition on the interface. Relationships
among various quasi-static poroelastic parameters are developed. It is shown that local fluid flow mechanism is signif-
icant only in the porous media with local heterogeneities. The relaxation time of the compatibility condition on the
interface depends upon the details of local structure of porous media that control local fluid pressure diffusion. The
new model is used to describe the velocity dispersion and attenuation in fully saturated porous media. The proposed
model provides a theoretical framework to simulate the acoustical behavior of fully saturated porous media over a wide
range of frequencies without making any explicit assumption about the structure of local heterogeneities.
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1. Introduction

Natural porous media such as rocks and sediments in the earth generally have heterogeneity in their
material properties at different spatial scales. When a stress wave passes through a heterogeneous porous
medium saturated by a fluid, pore fluids existing in different regions respond with different changes in their
pore pressures. An internal pore pressure equilibrating process then takes place leading to pore fluid flowing
from higher pressure regions to lower pressure regions. According to the distance over which fluid pressure
try to equilibrate, three regimes of fluid flow can be identified (Cleary, 1978; Pride et al., 2003). Macroscopic
(wavelength-scale) flow is driven by fluid pressure gradient developing at the peak and trough of the stress
wave. At microscopic (pore) scales, the fluid is squeezed out of or taken into microcracks and broken grain
contacts (Mavko and Nur, 1975; O�Connell and Budiansky, 1977). At meso-scales, which are much larger
than pore sizes but much smaller than the wavelength, due to heterogeneities such as variations in lithology
and porosity, internal fluid flow occurs from the more compliant high-pressure regions to the relatively stiff
low-pressure regions.

It has been recognized that, while Biot�s theory of poroelasticity (Biot, 1956a,b, 1962) very well describes
the effects of macroscopic flow, it fails to address the effects of local (either microscopic or mesoscopic) fluid
flow on the acoustical behavior of porous media with local heterogeneities (Winkler, 1985; Gist, 1994). As a
consequence, much research has been devoted to extend or modify some aspects of Biot�s theory to account
for the effects of local fluid flow. Generally two approaches are taken to account for local fluid flow. The
first approach explicitly considers the spatial heterogeneities such as fine layering and inclusions (Gurevich
et al., 1997, 1998); the second approach considers viscoelasticity associated with local fluid pressure diffu-
sion in different ways as described below.

Traditionally, the viscoporoelastic behavior related to microscopic flow was investigated by examining
the fluid flow in an individual crack (Mavko and Nur, 1975; O�Connell and Budiansky, 1977), or in a grain
contact area (Murphy et al., 1986). The effective material properties derived from these procedures depend
upon the details of microstructure that are difficult to quantify. More recently, an effective way of analyzing
microscopic flow was adopted by Dvorkin and Nur (1993), Dvorkin et al. (1995). In this procedure, micro-
scopic apertures such as microcracks and grain contacts are taken to be crack-like compliant pores, which
are assumed to be arranged perpendicular to the direction of compression. Fluid flow inside the crack-like
pores is then characterized and incorporated into Biot�s theory. Interestingly, Dvorkin et al. (1995) showed
that the viscoelasticity induced by microscopic flow can be characterized using a frequency-independent
parameter Z, which indeed is the square root of the characteristic time of microscopic flow. This approach
does not, however, consider mesoscopic fluid flow.

In an attempt to address mesoscopic fluid flow in fully saturated rocks, Pride and Berryman (2003a,b)
and Pride et al. (2004) have developed a double-porosity theory in which the material is viewed as a
composite of two isotropic porous solids. One of the essential components of this theory is the dynamic
evolution equation controlling the internal fluid transfer between the two porous phases. In this con-
text, the effective properties characterizing the overall viscoelastic behavior of the composite are
expressed as functions of the properties of individual constituents and the characteristic size of the
embedding solid phase. The complexity of this theory is likely to increase drastically with increasing
heterogeneity.

Here, we provide an alternative procedure to characterize the effects of local fluid flow on the acoustical
behavior of fully saturated porous media. Our procedure is formulated within the framework of the theory
of Biot�s poroelasticity (Biot, 1962), but based on volume averaging of microscopic equations. In contrast to
previous theories, the proposed procedure makes no assumption on the local structure of heterogeneities con-
trolling local fluid flow, and the corresponding material properties can be easily obtained. The essential step
in our derivations is to characterize the effect of local fluid flow by the notion of the dynamic compatibility
condition on the interface between the solid and the fluid (Wei and Muraleetharan, 2002a). Information on
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the details of local heterogeneity is shown to be collectively stored in the relaxation time of the dynamic com-
patibility condition.

The paper is separated into two parts. The first part deals with constitutive equations and material prop-
erties, where the complex, frequency-dependent material properties characterizing the viscoelasticity due to
local fluid flow are evaluated. In the second part, the new model is applied to describe the acoustical veloc-
ity dispersion and attenuation, from which the information on the local structures of heterogeneities is ex-
tracted. In Section 2, a continuum theory of porous media is first introduced, where energy dissipation
induced by pore fluid flow is analyzed, and the dynamic compatibility condition on the interface between
solid and fluid is introduced. In Section 3, linear constitutive equations are developed within the framework
of Biot�s theory of poroelasticity; and complex, frequency-dependent material parameters are derived. In
Section 4, various relationships among quasi-static poroelastic parameters are developed, and the condition
of local homogeneity is discussed. In Section 5, the relaxation time of the dynamic compatibility condition
is developed from the micromechanics point of view. In Section 6, the seismic dispersion equation is pre-
sented. In Section 7, effects of the relaxation time on the acoustical behavior of porous media are discussed
through numerical examples. In Section 8, the new model is applied to describe the measured acoustical
velocity dispersion and attenuation of fluid-saturated porous rocks.
2. Theory

The theoretical developments given below follow a macroscopic approach. Hence, unless otherwise spec-
ified, all variables are macroscopic quantities. Macroscopic balance equations and state variables are ob-
tained by averaging their microscopic counterparts over an averaging volume (see, for example,
Hassanizadeh and Gray, 1979a,b). In this paper, a porous medium is viewed as a macroscopically isotropic,
homogeneous porous continuum, which is a superposition of a solid matrix (S) and a pore fluid (W).

2.1. The effective volume fraction of the pore fluid

Under fully saturated conditions, the volume fraction nW of pore fluid is usually assumed to be equal to
the porosity of a porous medium. In a porous medium with local heterogeneities such as different porous
phase inclusions, microscopic grain cracks, and broken grain-to-grain contacts (see Fig. 1), however, the
meaning of the fluid volume fraction is quite subtle. The behavior of the fluid in the pore space of the local
heterogeneities is different from that of the fluid in the surrounding pores, though these two parts of pore
fluid can exchange mass. To distinguish these two regions of pore fluid, we generalize the concepts of stiff
porosity and soft porosity originally proposed by Dvorkin et al. (1995). Here the soft porosity nso is defined
Fig. 1. Local heterogeneities in porous media: (a) mesoscopic heterogeneity; (b) microscopic heterogeneity.
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as the ratio of the volume of the pore fluid trapped in the local heterogeneities to the total volume of the
porous medium, while the stiff porosity nst is the ratio of the volume of the remainder of pore fluid to
the total volume of the porous medium. Therefore, the total porosity n is equal to the sum of nst and nso.

In the following, nW is unambiguously designated as same as the stiff porosity nst and it is called the effec-
tive volume fraction of the pore fluid. It is assumed that the soft porosity is much smaller than the rigid one
so that the latter is very close to the total porosity n (i.e., nW = nst � n). This assumption is reasonable for
many porous rocks (e.g., Mavko and Jizba, 1991). The small portion of pore fluid trapped in the soft pores
is considered as a part of the solid constituent. It is important to note that the use of the effective volume
fraction has an important implication in the theory developed here.

To further explore this idea, consider a special case where the solid matrix is rigid, i.e., the total porosity
is a constant, and the pore pressure is subjected to an alteration. Due to the fluid pressure imbalance be-
tween the local heterogeneities and the surrounding pore space, fluid mass exchange (i.e., local fluid flow)
between these two regions will take place. This implies that the effective volume fraction nW is subjected to
change (though very slightly!) and the change of nW is independent of the skeletal deformation and the com-
pression of solid grains (since n is constant). It is clear that the actual amount of nW depends on the fre-
quency of the fluid pressure alteration. Under static conditions (i.e., in the low-frequency limit), nW

becomes the maximum, since maximum amount of fluid mass will be exchanged between the two bodies
of fluid. In the high-frequency limit, nW is the minimum, since no mass exchange occurs.

From what is discussed above, in modeling deformable porous media, the effective volume fraction nW

must be generally viewed as an independent state variable that accounts for the mass exchange between the
pore space of the local heterogeneities and the surrounding pores. This is one of the distinguished features
of the theory developed in this paper.

2.2. State equations

To derive the constitutive equations for a porous media, we shall first establish the state equations of the
solid constituent and the pore fluid. These equations have been developed previously by the authors based
upon a continuum theory of mixtures with interfaces (Muraleetharan and Wei, 1999; Wei and Muraleeth-
aran, 2002a,b), and will be summarized here.

From the standpoint of the mixture theory of porous media, the total stress tensor r of a porous material
can be partitioned into:
r ¼ nSrS � nWpW1 ð1Þ

where 1 is the second-order symmetric identity tensor with components represented by Kronecker delta dij;
nS is the effective volume fraction of the solid and related to nW or n through nS = 1 � nW (�1 � n); rS is the
intrinsic stress tensor of the solid phase; pW is the pore fluid pressure.

The state equations are given by
rS ¼ qS oA
S

oe
� pS1 ð2Þ

pS ¼ ðqSÞ2 oA
S

oqS
; pW ¼ ðqWÞ2 oA

W

oqW
ð3Þ
where e is the infinitesimal strain tensor of the solid matrix; AS and AW are the free energy densities (per unit
mass) of the solid constituent and the fluid, respectively. Eq. (2) implies that the intrinsic stress tensor rS of
the solid constituent has two contributions: one is related to the skeletal deformation (e), and the other (de-
noted as pS) is associated with the compression of the solid material (the compression of the solid material is
represented by its mass density qS). It is noted that the two contributions of rS are generally coupled. The
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standard solid mechanics sign convention, i.e., tensile stresses and strains are positive, is used here and
through out the paper.

The free energy densities are assumed to be given by the following functions:
AS ¼ ASðe; qSÞ ð4Þ

AW ¼ AWðnW; qWÞ ¼ UðnWÞ þ HðqWÞ ð5Þ

where qW is the mass density of the fluid. State equations similar to (2) and (3) had been derived by
Berryman and Thigpen (1985) based on the variational principle. In this paper, however, in order to
account for the local fluid flow as described in Section 2.1, the free energy of pore fluid is assumed to
depend explicitly on nW in addition to qW.

2.3. Energy dissipation induced by fluid flow

Given state equations (2) and (3) and with assumptions (4) and (5), the rate of energy dissipation due to
pressure relaxation and fluid flow can be expressed as (Wei and Muraleetharan, 2002a)
n ¼ bP _nW � bs � ðvW � vSÞ P 0 ð6Þ

where _nW is the rate of change of the effective volume fraction; vS and vW are the velocities of the solid and
the fluid, respectively; bs is the drag force induced by the fluid flow with respect to the solid matrix; bP is the
unbalanced pressure difference given by
bP ¼ pW � pS � ðpW � pSÞeq ð7Þ
Here
ðpW � pSÞeq ¼ nWqW oAW

onW
ð8Þ
is the pressure difference at equilibrium. As discussed below, the first term in the right-hand side of Eq. (6)
represents the rate of energy dissipation due to local fluid-pressure relaxation (i.e., local fluid flow), while
the second term is induced by macroscopic fluid flow.

To understand these two processes of energy dissipation, we shall first analyze the micro-interactions
within an averaging volume of the porous medium (Fig. 1a). The size of the averaging volume is assumed
to be comparable to the wavelength of concern. At microscopic (pore) scales, when the pore fluid moves
with respect to the solid grains, a viscous boundary layer begins to develop in the pores and microscopic
viscous forces will be generated, acting on the direction tangential to the grain boundaries. In the directions
normal to the grain boundaries, the pressure compatibility condition requires that the microscopic pressure
pSm of the solid grain be equal to that of the pore fluid (i.e., pWm ). These two types of microscopic interactions
can be linked to two types of macroscopic interactions as discussed below.

Suppose that a stress wave passes through a porous medium. Then a pressure gradient will be generated
between the peak and trough of the stress wave, leading to macroscopic (wavelength-scale) fluid flow across
the averaging volume. As discussed above, due to the movement of the pore fluid with respect to the solid, a
viscous boundary layer begins to develop in the pores if the frequency is larger than a certain value. This
kind of viscous drag forces results in wave energy dissipation. The frequency for the onset of the viscous
boundary layer is known to be approximately equal to the characteristic frequency xB at which maximum
energy dissipation occurs due to macroscopic fluid flow (Johnson et al., 1987). It is therefore suggested that
the microscopic viscous drag forces acting tangentially on the solid grain boundaries are induced by mac-
roscopic fluid flow. At macroscopic level, these drag forces can be collectively represented by bs in Eq. (6),
and can be characterized using Biot�s theory (Biot, 1956a,b). The characteristic angular frequency of
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macroscopic flow is approximately given by xB � ngW/(qWk), where gW the dynamic viscosity of the fluid,
and k the permeability.

Now consider the macroscopic pressures of the solid and the fluid constituents in the averaging volume
introduced above. Because of the pressure compatibility, some sort of pressure balance exists between the
solid constituent and the fluid. This pressure compatibility can be represented by Eq. (8), which is the mac-
roscopic counterpart of the microscopic pressure compatibility condition on the solid boundaries. When a
stress wave passes through the porous medium, due to the fluid mass exchange (i.e., local fluid flow) be-
tween the local heterogeneities and the surrounding pores, the pressures of the solid and the fluid will be
redistributed over the averaging volume. The pressure redistribution can be considered as a relaxation pro-
cess that is governed by the local fluid flow, either microscopic or mesoscopic, depending on the frequency
of the stress wave. As a consequence, the pressure difference (pW � pS) is generally a rate-dependent quan-
tity. Its magnitude depends on the frequency. At the low-frequency limit, local pressure-diffusion processes
will be completed within the half the period of the stress wave and no pressure imbalance will be generated
in the averaging volume. In general, however, local pressure imbalance will exist in the averaging volume,
and local pressure-relaxation processes will take place. These relaxation processes can attenuate wave en-
ergy as represented by the first term in the right-side of Eq. (6).

Assume that energy dissipation follows a linear law. As a first approximation and for isotropic porous
media, it is assumed based on Eq. (6) that
bs ¼ �lðvW � vSÞ; bP ¼ f _nW ð9Þ

where l and f are positive material coefficients. For the fluid flow of Poiseiulle type, l is given by
l ¼ ðnWÞ2gW
k

ð10Þ
In practice, however, the assumption of Poiseiulle flow is not always valid. Rather, coefficient l depends
generally upon frequency and the microstructure inside the pores (Biot, 1956b; Johnson et al., 1987). Be-
cause our main objective is to address the effects of local fluid flow, it is assumed for convenience that
the pore fluid obeys Poiseiulle flow and Eq. (10) applies. Also, it is assumed that f is independent of fre-
quency. Now the pressure difference (pW � pS) is given by
pW � pS ¼ ðpW � pSÞeq þ f _nW ð11Þ

Eq. (11) can be considered as the macroscopic counterpart of the dynamic compatibility condition on the
solid grain boundaries. This equation will play a key role in the following derivations.
3. Linear constitutive equations

3.1. Linearization of the theory

Assume that the porous medium under consideration is initially at an equilibrium state, which is char-
acterized by state parameters: nS0, n

W
0 , q

S
0, q

W
0 and uS0. Here uS0 is the initial displacement of the solid matrix.

Under a small disturbance, the state parameters are changed by DnW, DqS, DqW and DuS, where D() repre-
sents the incremental value of a quantity. To derive linear constitutive equations, it is sufficient to assume
the following quadratic forms for free energy density functions:
nS0q
S
0DA

S ¼ 1

2
nS0DeðD : DeÞ þ nS0k

0 Dq
S

qS
0

De : 1þ 1

2
nS0KS

DqS

qS
0

� �2

ð12Þ

nW0 q
W
0 DA

W ¼ 1

2
nW0 KW

DqW

qW
0

� �2

þ 1

2
HWðDnWÞ2 ð13Þ
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where k 0, KS, KW and HW are material constants; for isotropic porous media, D is a fourth-order tensor
with components given by kSdijdkl + lS(dikdjl + dildjk)/2, where kS and lS are material constants.

The linear counterparts of state equations (2) and (3) can now be written as
DrS ¼ ðkS � k0ÞðDe : 1Þ1þ 2lSDe� ðKS � k0ÞDq
S

qS
0

1 ð14Þ

DpS ¼ k0De : 1þ KS

DqS

qS
0

ð15Þ

DpW ¼ KW

DqW

qW
0

ð16Þ
and Eq. (8) becomes
ðDpW � DpSÞeq ¼ HWDnW ð17Þ
Clearly, parameters KS and KW are the effective bulk moduli of the solid material and the fluid, respec-
tively. Constant k 0 characterizes the coupling effects between the compression of solid material and the
deformation of solid matrix. Constant HW is the change in pressure difference (pW � pS) solely due to a unit
change in nW under static conditions. For later reference, the linear mass balance equation of c-phase
(c = S, W) is introduced as
nc0
Dqc

qc
0

þ Dnc þ nc0r � ðDucÞ ¼ 0 ð18Þ
3.2. Quasi-static response

Under quasi-static (low-frequency) conditions, no local unbalanced pressure is generated in the porous
medium as discussed above. In this case, bP ¼ 0, and the time-dependent behavior of porous media is solely
due to macroscopic fluid diffusion. Displacement fields uS and uW are chosen as independent state variables.
By eliminating Dqc and Dnc (c = S, W) from (14)–(18), it follows after some manipulations that
nS0Dr
S ¼ ½ADe : 1þ Qr � ðDuWÞ�1þ 2GDe ð19Þ

nW0 Dp
W ¼ �QDe : 1� Rr � ðDuWÞ ð20Þ
where Gð¼ nS0lSÞ is the shear modulus of the porous matrix; coefficients A, Q, and R are related to KS, KW,
kS, lS, k 0, and HW as below:
A ¼ bK � 2

3
Gþ ðnS0Þ

2ðKS � k0Þ2ðKW þ nW0 HWÞ
KS½nW0 KS þ nS0ðKW þ nW0 HWÞ�

ð21Þ

Q ¼ nS0n
W
0 KWðKS � k0Þ

nW0 KS þ nS0ðKW þ nW0 HWÞ
ð22Þ

R ¼ ðnW0 Þ
2KWðKS þ nS0HWÞ

nW0 KS þ nS0ðKW þ nW0 HWÞ
ð23Þ
and
bK ¼ nS0 kS þ
2

3
lS

� �
� nS0ðk

0Þ2

KS

ð24Þ
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For the purpose of comparison, the notations of Biot (1956a) are used here for the elastic parameters. One
can observe from Eqs. (19) and (20) that for fully saturated isotropic porous media, there are four indepen-
dent material parameters, i.e., A, Q, R, and G, which have to be determined.

The fluid mass content mW can also be introduced as a state variable. Note that
DmW

qW
0

¼ �r � ½nW0 ðDuW � DuSÞ� ð25Þ
where DmW=qW
0 represents the volume of the fluid entering the pores in a unit volume of bulk material. With

Eqs. (1), (19) and (20), one can derive:
Dr ¼ KU � 2

3
G

� �
De : 1� aBM

DmW

qW
0

� �
1þ 2GDe ð26Þ

DpW ¼ M �aBDe : 1þ
DmW

qW
0

� �
ð27Þ
where KU is the undrained bulk modulus of the porous material, M the fluid storage coefficient, and aB the
effective stress coefficient. Parameters M and aB are given by
1

M
¼ nS0

KS þ nS0HW

þ nW0
KW

ð28Þ

aB ¼ 1� nS0ðk
0 þ nS0HWÞ

ðKS þ nS0HWÞ
ð29Þ
Eliminating DmW=qW
0 from Eqs. (26) and (27) yields
Drþ aBDpW1 ¼ KD � 2

3
G

� �
ðDe : 1Þ1þ 2GDe ð30Þ
where KD is the drained bulk modulus and given by
KD ¼ KU �Ma2B ¼ bK þ nS0ðKS � k0Þ2 1

KS

� 1

KS þ nS0HW

� �
ð31Þ
Clearly, KD equals bK when HW vanishes. As shown in Section 4.2, this is the case when porous media are
locally homogeneous.

In the constitutive relationships presented above, there are six elastic parameters, i.e., KS, KW, kS, lS, k 0

and HW. Although the static behavior of saturated porous materials can be fully characterized by using
only four independent poroelastic parameters, e.g., G, KU, M and aB, we shall show later that these six
parameters play a key role in evaluating the dynamic properties of porous media.

3.3. Dynamic response

In general, free fluid filtration is locally prohibited in the pore space of local heterogeneities such as mi-
cro-cracks and broken grain contacts. When the characteristic time of local fluid-pressure relaxation is com-
parable to or larger than the characteristic time of loading the effect of the local pressure relaxation in local
heterogeneities becomes significant. As a consequence, the porous medium as whole behaves as a viscoelas-
tic solid, and its macroscopic behavior is frequency-dependent.

By virtue of Eq. (17), the linear form of Eq. (11) can be written as
DpW � DpS ¼ HWðDnW þ sWD _nWÞ ð32Þ



990 C. Wei, K.K. Muraleetharan / International Journal of Solids and Structures 43 (2006) 982–1008
where sW (=f/HW) is the relaxation time of local fluid pressure. To derive the complex, frequency-depen-
dent parameters that characterize viscoporoelasticity, one assumes that all state variables have e�ixt time
dependence. Eq. (32) now becomes
DpW � DpS ¼ HWð1� ixsWÞDnW ð33Þ
where x is the angular frequency and i2 = �1. This equations implies that pressure difference change
(DpW � DpS) is frequency-dependent as discussed in Section 2.3.

Based on the principle of correspondence (Biot, 1962), one can derive the linear constitutive equations
similar to those given in Section 3.2 (i.e., Eqs.(19), (20), (26), (27) and (30)). Now the material parameters in
the constitutive equations are complex and frequency-dependent. The only difference between the quasi-sta-
tic and dynamic model presented above exists in Eq. (33). By comparing (33) to (17), it is clear that the
complex material parameters can be obtained by replacingHW forHW(1 � ixsW) in their quasi-static coun-
terparts. For instance, corresponding to (28), (29) and (31), one can write:
1eMðxÞ
¼ nS0

KS þ nS0HWð1� ixsWÞ
þ nW0
KW

ð34Þ

~aBðxÞ ¼ 1� nS0 ½k
0 þ nS0HWð1� ixsWÞ�

½KS þ nS0HWð1� ixsWÞ�
ð35Þ

eKUðxÞ ¼ eM~a2B þ bK þ nS0ðKS � k0Þ2

KS

� nS0ðKS � k0Þ2

KS þ nS0HWð1� ixsWÞ

" #
ð36Þ
where quantities with a caret ‘‘�’’ are complex numbers.
Compared to the quasi-static poroelastic model discussed in Section 3.2, viscoporoelastic model depends

upon an additional material parameter, i.e., the relaxation time sW. As discussed in Section 5, the parameter
sW is a function of the local structure of porous media that controls local fluid flow. In the model presented
here the frequency-dependent behavior of a porous material is taken into account only through Eq. (33).
Constants KS, KW, kS, lS, k 0, HW and sW are assumed to be independent of frequency.
4. Quasi-static poroelastic parameters

To determine the complex, frequency-dependent material properties, one must first evaluate parameters
KS, KW, kS, lS, k 0,HW and sW. Suppose that the effective bulk moduli of the solid material and the fluid, i.e.,
KS and KW, are known, and lS is obtained by measuring the shear modulus G of the porous medium. Next
we will evaluate kS, k 0 and HW. Because these elastic constants are independent of frequency, they can be
determined under quasi-static conditions (x � 0). To this end, compression tests can be conducted to mea-
sure three quasi-static poroelastic parameters such as the drained and undrained bulk moduli of the porous
medium. These tests include undrained compression, drained compression, and unjacketed compression
tests (Kümpel, 1991).

4.1. Porous media with local heterogeneities

First consider a porous medium with local heterogeneities. Through compression tests, one can measure
poroelastic parameters including undrained bulk modulus KU, drain bulk modulus KD, pore pressure coef-
ficient B and effective stress coefficient aB, as well as the pore compressibility Cn and the unjacketed com-
pressibility C�

S (or unjacketed bulk modulus K�
S of the solid matrix). The latter two are defined by
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Cn ¼ � 1

V n

oV n

opW

� �
pc¼pW

; C�
S ¼

1

K�
S

¼ � 1

V
oV
opW

� �
pc¼pW

ð37Þ
where V and Vn are the total and pore volumes, respectively, in an averaging volume of the porous medium;
pc is the confining (or total) pressure. Lade and de Boer (1997) introduced two other compressibility param-
eters, defined by
Cu
S ¼ � 1

V S

oV S

opW

� �
pd

; Cd
S ¼ � 1

V S

oV S

opd

� �
pW

ð38Þ
where VS is the volume of the solid material. Here, pd (=pc � pW) is the intergranular pressure. Parameters
Cu

S and Cd
S represent the compressibility of the solid material due to changes in pW and pd, respectively.

Next, we shall show that generally there are three independent parameters among those measured
through the above-mentioned compression tests, provided that the fluid bulk modulus KW is known. From
the definitions of Cn, C

�
S and Cu

S, it immediately follows that
Cu
S ¼

1

nS0
ðC�

S � nW0 CnÞ ð39Þ
Also, one can write
Cd
S ¼ C�

S ð40Þ

To derive expression (40), one can first use (14)–(17) to obtain
Dpd ¼ �nS0 kS þ
2

3
lS þ nS0HW

� �
De : 1� nS0ðk

0 þ nS0HWÞ
DqS

qS
0

ð41Þ

DpW ¼ ðk0 þ nS0HWÞDe : 1þ ðKS þ nS0HWÞ
DqS

qS
0

ð42Þ
Using the definitions and noting that DV/V = De:1, DV S=V S ¼ �DqS=qS
0, and V S=V ¼ nS0, one derives:
CD ¼ ðKS þ nS0HWÞ
W

ð43Þ

Cd
S ¼ C�

S ¼
nS0ðk

0 þ nS0HWÞ
W

ð44Þ

Cu
S ¼

nS0ðkS þ 2lS=3þ nS0HWÞ
W

ð45Þ
where CD (=1/KD) is the drained compressibility of the solid matrix, and
W ¼ nS0 ½ðkS þ 2lS=3þ nS0HWÞðKS þ nS0HWÞ � ðk0 þ nS0HWÞ2� ð46Þ
Lade and de Boer (1997) measured compressibility parameters CD, C
�
S, C

u
S and Cd

S for an artificial porous
material (i.e., Basswood cubes) subjected to various confining pressures. Lade and de Boer�s (1997) results
are reproduced in Fig. 2. It can be seen that all the values of C�

S are very close to those of Cd
S for all the

confining pressures.
By using (43) and (44), the effective stress coefficient (29) becomes:
aB ¼ 1� C�
S

CD

ð47Þ
It is important to note that thus far no restriction has been made on the local structure in porous
media. Hence, Eq. (47) is generally valid for isotropic porous media. Nur and Byerlee (1971) obtained
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an expression similar to (47). In their formulation, however, it was assumed that the porous medium of
concern is locally homogeneous.

Using (26) and (27), in undrained conditions (i.e., DmW = 0), one obtains:
DpW ¼ �MaB
KU

Dr : 1

3

� �
ð48Þ
With its very definition, the pore pressure coefficient B is given by
B ¼ MaB
KU

¼ MaB
KD þMa2B

ð49Þ
This is a well-known result in poromechanics (e.g., Coussy, 1995, p. 102). Using (28), (29), (31), (43)–(45)
and (49), one can further derive:
B ¼ 1

1þ nW
0
CWþnS

0
Cu
S
�C�

S

CD�C�
S

¼ 1

1þ nW
0
ðCW�CnÞ
CD�C�

S

ð50Þ
where CW (=1/KW) is the fluid compressibility. An alternative way to derive Eq. (50) can be found in
Berryman (2002).

It can be deduced from Eqs. (39) and (43)–(45) that
W ¼ nS0
CDðaBC�

S � nW0 CnÞ
ð51Þ
Now it follows from Eq. (43) that
KS þ nS0HW ¼ nS0
aBC

�
S � nW0 Cn

ð52Þ
Using Eq. (52), one may cast Eq. (28) into:
1

M
¼ nW0 CW þ aBC

�
S � nW0 Cn ð53Þ
This is the most general expression for the fluid storage coefficient M, and hence it is valid for any fully
saturated isotropic porous media.
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It is now clear that because of (39), (40), (47), (49), (50) and (53), if CW is determined, there are only three
independent parameters among KU, B, KD, aB, Cn, C

�
S, M, Cu

S and Cd
S. With any three of these parameters

and if KS, KW and G are given, constants kS, k 0 andHW can be finally determined.
Noting that KU ¼ KD þMa2B and using Eqs. (47) and (53), one obtains:
1

CU � C�
S

¼ 1

CD � C�
S

þ 1

nW0 ðCW � CnÞ
ð54Þ
where CU (=1/KU) is the undrained compressibility of the solid matrix. This relationship was first derived
by Brown and Korringa (1975), who made use of the reciprocity theorem of elasticity.

4.2. Locally homogeneous porous media

It is now instructive to discuss a special model first introduced by Gassmann (1951), in which the porous
medium is assumed to be composed of a solid matrix that is locally homogeneous. In such materials, the
strain components along any continuous path across the solid matrix are equal to those within the solid
material of the matrix. This assumption was extensively applied in poromechanics (Biot and Willis,
1957; Nur and Byerlee, 1971; Rice and Cleary, 1976).

Consider an averaging volume of a locally homogeneous porous medium that is fully saturated with a
liquid. Suppose that the material is unjacketed and subjected to a hydrostatic pressure increase D pc. The
porous material deforms in exact proportion everywhere in the averaging volume. One therefore expects
that the porosity will be constant, i.e. Dn = DnW = 0. From Eq. (17), it follows that DpS = DpW = Dpc. Also,
in the porous medium, there exist no local heterogeneities such as different soft porous inclusions, broken
grain contacts and microcracks; all the pores are interconnected and allow free fluid filtration. In this case,
the free energy of the fluid is independent of the porosity. By its very definition, HW vanishes.

Due to local homogeneity, DqS=qS
0 ¼ �De : 1 and HW = 0. In an unjacketed compression test,

Dpd = Dpc � DpW = 0. Now it follows from Eq. (41) that
k0 ¼ kS þ
2

3
lS ð55Þ
Using Eqs. (39), (44) and (45), one can obtain:
Cn ¼ Cu
S ¼ Cd

S ¼ C�
S ð56Þ
Since HW = 0, Eq. (50) yields
C�
S ¼

1

K�
S

¼ nS0
ðaB � nW0 Þ

1

KS

ð57Þ
Noting that nW0 < aB 6 1, it is clear that C�
S P CSð¼ 1=KSÞ. Hence, K�

S is generally less than the effective
bulk modulus KS of the solid material in a porous medium. This discrepancy is apparently due to the cou-
pling between the compressions of the solid material and the matrix.

Applying Eq. (56) to Eq. (53), it immediately follows that
1

M
¼ nW0

KW

þ aB � nW0
K�

S

ð58Þ
The well-known Gassmann (1951) equation follows simply by inserting (56) into (54):
1

CU � C� ¼
1

CD � C� þ
1

nWðCW � C�Þ ð59Þ

S S 0 S
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Expressions (58) and (59) are valid only for the porous media that are locally homogeneous. In many
applications, however, porous media are heterogeneous, in which small portion of the fluid is trapped in
the soft pores such as grain microcracks and broken grain contacts so that free fluid filtration is prohibited
in these regions. In such cases, the effective volume fraction nW of the fluid may vary in a way discussed in
Section 2.1, and the free energy of the pore fluid depends upon nW. By its definition, parameter HW now
becomes a positive quantity. Therefore, constant HW is the parameter that can be used to characterize
the local heterogeneity of fully saturated porous materials.

Eq. (56) is an additional constraint imposed by assuming local homogeneity, such that only two param-
eters are independent among KU, B, KD, aB, Cn, C

�
S,M, Cu

S and Cd
S. This fact was first recognized a long time

back by Biot and Willis (1957), who pointed out that for homogeneous porous media, there are only three
independent poroelastic parameters including G, provided that CW is known. In addition, for the porous
media that are locally homogeneous, since HW is zero, the effects of local fluid on the poroviscoelastic
behavior are negligible. In this case, complex material properties presented in Section 3.3 are real numbers
and independent of frequency. This result can be used to explain the experimental observations that Biot�s
theory predicts very well the seismic response of synthetic porous media made from sintered glass beads,
whereas it fails to describe the seismic behavior of natural rocks (Winkler, 1985; Gist, 1994). The reason
is that the synthetic porous media are locally homogeneous, whereas the natural rocks generally have local
structure.

Because kS > 0 and HW P 0, using Eqs. (28), (29) and (31), one obtains the following estimates for KS:
nS0 �
ð1� aBÞ2

nS0

" #
1

M
� nW0
KW

� ��1

� 1

nS0
KD � 2

3
G

� �
< KS 6 nS0

1

M
� n0
KW

� ��1

ð60Þ
5. Relaxation time of local fluid flow

Thus far, relaxation time sW has not been evaluated. As described in Section 8, using a trial-and-error
procedure, one can determine sW by comparing the model predictions with the measured seismic data of
porous media. This method avoids characterizing the details of local structure of porous materials. In prac-
tice, however, it is extremely useful to obtain the information on the local structure of porous media. Let xc

be the characteristic angular frequency of local (microscopic or mesoscopic) fluid flow. Because the pressure
relaxation process is governed by local fluid flow, the relaxation time can be approximately written as
sW � 2p/xc.

For microscopic flow in microscopic apertures, such as microcracks and broken grain contacts, there are
several formulations of xc available in the literature (O�Connell and Budiansky, 1977; Cleary, 1978; Mavko
and Nur, 1979). These formulations relate the characteristic frequency to a specific type of apertures asso-
ciated with the microscopic flow. In the following, microscopic apertures are treated as flat cylindrical cav-
ities in the solid phase. This kind of apertures can be used to simulate the broken grain contacts. Following
arguments of Johnston et al. (1979), one can obtain the relaxation time of the microscopic flow in flat cylin-
drical cavities as (see Appendix A):
sW ¼ 3gW
2KWa2

ð61Þ
where a is the typical aspect ratio of the apertures and gW the viscosity of the fluid.
If the aspect ratio a is small, the fluid may be absorbed onto the surface of the solid materials and there

will be no free fluid that can flow in response to a seismic wave and produce attenuation. As pointed out by
Jones (1986), for natural rocks, if a < 10�4, fluid flow in the apertures make no contribution to energy dis-
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sipation. With this value of a and for water (KW = 2.25 GPa, gW = 1 mPa s), it can be shown that sW must
be less than 10�4 s for the microscopic (squirt) flow dissipation to be active.

For mesoscopic flow, the relaxation time is given by sW � ‘2m=Dm, where ‘m is the characteristic size of
mesoscopic heterogeneity and Dm is the meso-scale fluid-pressure diffusivity. To be meaningful, ‘m should
be much less than the wavelength and much larger than the pore size. Keeping in mind that mesoscopic flow
is driven by the local gradient of fluid pressure, a simple dimensional analysis yields
Dm ¼ Mkm
gW

� KWk
nW0 gW

ð62Þ
where km is the meso-scale permeability and, as a first approximation, it is assumed to equal the global per-
meability k. It follows that
sW � nW0 gW‘
2
m

KWk
ð63Þ
Interestingly, for local fluid flow (either microscopic or mesoscopic), sW is proportional to gW. That is,
characteristic frequency fm (=1/sW) of local fluid flow is proportional to (1/gW), which is in a sharp contrast
to the macroscopic flow. This result is, however, consistent with experimental observations (Winkler, 1985).
6. Dispersion equation of compressional waves

To apply the theory to analyze the acoustical behavior of porous media, we now develop the dispersion
equation of compressional waves. Because local flow mechanisms is of primary interest in this paper, the
frequency dependence of permeability coefficient and the inertial coupling effects in the sense of Biot
(1956a,b) will be neglected.

First the governing equations are presented in the following linear form:
r � r ¼ q0

o2

ot2
uS þ qW

0

o2

ot2
w ð64Þ

� rpW ¼ qW
0

o2

ot2
uS þ qW

0

nW0

o

ot
þ gW

k

� �
o

ot
w ð65Þ
where w (¼ nW0 ðuW � uSÞ) is the filtration displacement such that the time rate of w represents the filtration
velocity of the fluid; gW the dynamic viscosity of the fluid; k the permeability; and q0 is the total initial mass
density of the porous media and given by q0 ¼ nW0 q

W
0 þ nS0q

S
0.

The linear constitutive equations are given by
r ¼ ðeKU � 2

3
eGÞr � uS þ ~aB eMr � w

� �
1þ G½ruS þ ðruSÞT� ð66Þ

� pW ¼ eMð~aBr � uS þr � wÞ ð67Þ
where complex parameters eKU, ~aB and eM are given by (34)–(36).
Inserting (66) into (64) and (67) into (65), and following a fairly standard procedure (Biot, 1956a), we

obtain the following dispersion equation of compressional waves:
eKU þ 4
3
G

� �
f2 � qx2 eM~aBf

2 � qWx2

eM~aBf
2 � qWx2 eMf2 � qW

nW
0

x2 þ gW
k ix

������
������ ¼ 0 ð68Þ
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where f is the complex wave number with a real part fR and an imaginary part fI. The phase velocity v and
attenuation (i.e. the inverse quality factor) Q�1 of the compressional waves are defined, respectively, by:
Table
Mater

Param

Bulk m
Bulk m
Densit
Densit
Perme
Viscos
Bulk m
Shear
Effecti
Pore p

a aB
v ¼ x
fR

ð69Þ

Q�1 ¼ 2fI
fR

ð70Þ
Clearly, given a certain frequency, dispersion equation (68) has two meaningful solutions that correspond,
respectively, to the first (fast) and the second (slow) compressional waves.
7. Effects of the relaxation time

We now present numerical examples to illustrate the effects of relaxation time sW on the compressional
waves propagating through fully saturated porous rocks. The material of concern is the D�Euville limestone
with a porosity of 0.18. The material properties of D�Euville limestone are summarized in Table 1.

The effects of relaxation time sW on the frequency dependence of phase velocity and attenuation of the
first compressional (P1) wave are depicted in Fig. 3. For these calculations the properties of D�Euville lime-
stone corresponding to a confining pressure of 5 MPa were used (Table 1). The results for Biot�s model are
obtained by setting sW = 0 s. In contrast to Biot�s model, the new model predicts significant velocity disper-
sion and attenuation due to local fluid flow (sW 5 0). For each sW, two peaks can be seen in the frequency
dependence of attenuation: the first one is associated with the local fluid flow, and the second one is related
to the macroscopic flow (i.e., the Biot flow). An increase in sW shifts the attenuation peak associated with
the local fluid flow (the peak on the left-hand side) to a lower frequency.

It is clear that the new model describes the energy dissipation due to both local fluid flow and macroscopic
fluid flow over a broad range of frequencies. In this example, when sW is larger than 0.0001 s, mesoscopic
flow is the dominant loss mechanism. Indeed, if sW > 0.0001 s, a simple calculation using Eq. (61) yields
the typical aspect ratio of apertures as a < 8 · 10�5, at which the effects of microscopic (squirt) flow become
trivial (Jones, 1986). If sW > 0.0001 s, Eq. (63) yields ‘m > 1 cm. On the other hand, if sW < 10�6 s, it follows
from (63) that ‘m < 1 mm, which is comparable to the pore size. Hence, for sW < 10�6 s microscopic (squirt)
flow will be dominant and for 10�6 s < sW < 10�4 s both micro-scale and meso-scale flows are active.

It can be seen from Fig. 4 that the local fluid flow has very slight influence on the velocity dispersion and
attenuation of the second compressional (P2) wave. This result is reasonable, since the slow wave is primar-
1
ial properties of D�Euville limestone (after Lucet, 1989)

eter Symbol Confining pressure

3 MPa 5 MPa

odulus of solid, GPa KS 62.0 62.0
odulus of water, GPa KW 2.25 2.25
y of solid, kg/m3 qS0 2710 2710
y of water, kg/m3 qW0 1000 1000
ability, m2 k 1.0 · 10�13 1.0 · 10�13

ity of water, Pa.s gW 1.0 · 10�3 1.0 · 10�3

odulus of matrix, GPa KD 11.5 16.7
modulus of matrix, GPa G 9.42 10.2
ve stress coefficienta aB 0.75 0.70
ressure coefficienta B 0.46 0.34

and B are estimated based on the equations provided in Section 4.
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ily associated with the macroscopic motion of the saturating fluid. Hence, the geometry and tortuosity of
the pores become the factors influencing the P2-wave (Klimentos and McCann, 1988; Gist, 1994). Yet, it is
interesting to note that the velocity of the P2-wave predicted by the new model (sW 5 0) is slightly higher
than that predicted by the Biot�s model in the high-frequency range. The reason for this phenomenon is that
the effects of local fluid flow are considered in the new model and not in the Biot�s model. At high frequen-
cies very little local fluid flow can occur and the fluid trapped in the local heterogeneities such as grain
microcracks and broken grain contacts move with the solid. This unrelaxed fluid within the local heteroge-
neities also makes the solid matrix more rigid with respect to the pore fluid. As demonstrated by Johnson
et al. (1982), when the solid matrix is much more rigid than the pore fluid, the velocity of slow wave in the
high-frequency range approaches vp2 ¼ vW=

ffiffiffiffi
T

p
, where vW is the velocity of compressional wave in the fluid

and T is the tortuosity of the pores. The new model captures this increase in the velocity of the P2-wave at
high frequencies due to the increase in the rigidity of the solid matrix caused by the unrelaxed pore fluid.

In practice, low-frequency acoustical measurements are difficult to obtain in rocks. Hence ultrasonic
measurements (e.g., at x > xB) are usually extrapolated to explain the low-frequency seismic behavior of
porous media. Our numerical results, however, show that such an extrapolation must be done with caution.
8. Applications

Within the context of the proposed theory, relaxation time (sW) is the only parameter that stores the
information on the details of local structure of porous media. It can be determined based on the measured
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seismic data. Such a feature endows the theory with great flexibility and capability in modeling the seismic
behavior of fully saturated porous media.

8.1. Velocity dispersion and attenuation in Berea sandstone

Winkler (1985) measured the seismic response of Berea sandstone samples saturated by different fluids
(brine and oil) and subjected to various confining pressures at a frequency of approximately 400 kHz. The
properties of the solid and fluid constituents are directly obtained from Winkler (1985). The poroelastic
parameters for various confining pressure are summarized in Tables 2 and 3. The dry velocities of the shear
and compressional waves measured by Winkler are used to calculate the shear modulus G and KD. The
parameters aB and B are estimated based on the magnitude of the measured velocity dispersion and the
equations presented in Section 4.

The predicted pressure dependence of P1-wave velocity is compared with the measured values in Fig. 5.
The velocities predicted by Biot�s theory in the low-frequency limit and the high-frequency limit are also
given in Fig. 5. In both brine-saturated and oil-saturated cases, Biot�s theory underestimates the velocity.
The discrepancy becomes smaller with an increasing confining pressure. The reason here is that, as the con-
fining pressure increases, more and more microscopic apertures become closed and the effects of micro-
scopic fluid flow are reduced. This phenomenon is an important feature of porous rocks containing
microcracks or broken grain contacts (Mavko and Jizba, 1991). The values of the relaxation time (sW)
are adjusted to match predictions with the measured data. The values of sW are given within the parentheses



Table 2
Poroelastic parameters of brine-saturated Berea sandstone

Parameter Symbol Confining pressure, MPa

5 10 20 40

Bulk modulus of matrix, GPa KD 8.32 10.78 13.26 15.18
Shear modulus of matrix, GPa G 8.52 10.75 12.40 13.49
Effective stress coefficient aB 0.75 0.69 0.62 0.56
Pore pressure coefficient B 0.54 0.44 0.36 0.30

Table 3
Poroelastic parameters of oil-saturated Berea sandstone

Parameter Symbol Confining pressure, MPa

5 10 20 40

Bulk modulus of matrix, GPa KD 8.30 11.21 14.10 15.76
Shear modulus of matrix, GPa G 8.69 10.96 12.54 13.63
Effective stress coefficient aB 0.75 0.69 0.62 0.56
Pore pressure coefficient B 0.48 0.38 0.30 0.25
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Winkler (1985).
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in Fig. 5. It can be seen that, in general, sW increases as the confining pressure increases. This can be ex-
plained using Eq. (61). When the confining pressure increases, a decreases and sW increases.

The predicted velocity dispersion of the P1-wave is described in Fig. 6. In both cases, the model predicts
significant influence of confining pressure on the velocity dispersion due to microscopic (squirt) flow. The
dispersion decreases with the increase in confining pressure and this can be attributed to the closure of
microcracks and grain contacts. Interestingly, in the brine-saturated samples the measured data points
are located in the frequency range between low and high limits, whereas in the oil-saturated samples the
data points are in the high-frequency limit. Because all other material properties are quite similar for both
types of samples, the difference is likely due to the viscosity gW of the saturating fluids. The oil has a vis-
cosity of 350 cp, which is two orders larger than that of brine (1 cp). As shown in Section 5, higher gW (i.e.,
larger sW) shifts the characteristic frequency xL to a lower value.

The model predictions of the frequency dependence of attenuation are depicted in Fig. 7. When the con-
fining pressure increases, the solid matrix becomes stiffer due to the closure of some of microcracks and
grain contacts, resulting in decrease in the energy loss associated with the microscopic (squirt) fluid flow.
It is quite clear that model correctly predicts this trend. Unfortunately, the measured data on the intrinsic
attenuation (due to local fluid flow) are not available. By analyzing the total apparent attenuation and the
scattering effects, Winkler (1985) suggested that, in contrast to those in the brine-saturated samples where
much of the dispersive range lies above the measurement frequency (�400 kHz), the measured attenuations
in the oil-saturated samples are obtained in the high-frequency tail of the relaxation. Our model predictions
in Fig. 7 clearly justify this suggestion. This example shows that the proposed model can reasonably explain
the acoustical response of porous rocks saturated with different types of fluids.
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In practice, it is sometimes assumed that the operating frequency of microscopic (squirt) flow is in the
high-frequency range. From this example, however, we should keep in mind that it is difficult to decide
whether microscopic flow or mesoscopic flow dominates the energy loss merely based upon the character-
istic frequency xL corresponding to local fluid flow. In some heavy-oil-bearing reservoirs, for instance,
microscopic (squirt) flow could operate within the seismic frequencies.

8.2. Attenuation in D’Euville limestone

In this example, we shall calculate the attenuation based upon the measured velocity of the P1-wave in
D�Euville limestone subjected to various confining pressures. The material properties are summarized in
Table 1. The measured data on the velocity and attenuation are obtained from Lucet (1989) and presented
in Fig. 8. These measurements were made in the seismic and ultrasonic frequencies.

From the measurements, we can see that there is significant velocity dispersion in the limestone under
both confining pressures (3 and 5 MPa). The large magnitude of the measured attenuation implies that
the energy loss could be attributed to local fluid flow. Indeed, the characteristic frequency xB of macro-
scopic flow is about 2 MHz, which is above the range of measurement frequencies. In order to determine
the attenuation, we choose the value of sW such that the predicted velocities fit the measured data points.
This yielded a value of sW � 1.2 · 10�5 s for a confining pressure of 5 MPa, and sW � 8 · 10�6 s for a con-
fining pressure of 3 MPa. Note that the rock sample subjected to a larger confining pressure has a larger sW,
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Fig. 8. (a) Velocity dispersion and (b) attenuation of the P1-wave in fully saturated D�Euville limestone at two different confining
pressures. The measured data are obtained from Lucet (1989).
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which is reasonable as explained in Section 8.1. In both cases, the magnitudes of predicted attenuations are
comparable to the measured values, implying that the predicted results are reasonable.

In the above given calculations, no information on the details of the local structure are necessary. As
shown the value of sW can be determined based on the measured seismic data. The value sW can be used
to extract useful information about the local structure of the porous medium. If we assume that the micro-
scopic apertures in the porous material are represented by cylindrical cavities, using Eq. (61), we can cal-
culate the aspect ratio of these apertures as a = 2.4 · 10�4 for 5 MPa, and a = 2.9 · 10�4 for 3 MPa.

8.3. Effects of mesoscopic fluid flow

Several investigations in the laboratory have shown that significant dispersion and attenuation may
occur at frequencies lower than 1 kHz (Spencer, 1981; Paffenholz and Burkhardt, 1989). It is believed that
this phenomenon is due to radial fluid flow caused by the size limit of the samples, i.e., the so-called Biot–
Gardner effect (Gardner, 1962; White, 1986). Because the sizes of the samples are much smaller than the
wavelength and much larger than the pore size, the Biot–Gardner effect can be considered as some sort
of mesoscopic fluid flow.

The frequency dependence of velocity dispersion and attenuation in the fully saturated Dolomite are
shown in Fig. 9. The properties of Dolomite are summarized in Table 4. The data points are calculated
from the measured Young modulus, Poisson ratio and attenuations of extensional and shear waves
(Paffenholz and Burkhardt, 1989). The theoretical predictions (the solid line) agree very well with the exper-
imental data for sW = 0.1 s. Such a magnitude of sW excludes microscopic (squirt) flow from being the
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Fig. 9. (a) Velocity dispersion and (b) attenuation of the P1-wave in fully saturated Dolomite. The measured data (solid stars) are
obtained from Paffenholz and Burkhardt (1989).

Table 4
Material properties of saturated Dolomite (Paffenholz and Burkhardt, 1989)

Parameter Symbol Value

Porosity n 0.218
Bulk modulus of solid, GPa KS 37.0
Bulk modulus of water, GPa KW 2.25
Density of solid, kg/m3 qS 2833
Density of water, kg/m3 qW 1000
Viscosity of water, Pa s gW 0.001
Permeability, m2 k 1.1 · 10�16

Bulk modulus of matrix, GPa KD 13.7
Poisson ratio mD 0.18
Effective stress coefficienta aB 0.67
Pore pressure coefficienta B 0.33

a aB and B are estimated based on the equations presented in Section 4.
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dominant loss mechanism, since the corresponding aspect ratio a (�2.6 · 10�6) is too small for microscopic
(squirt) flow to be significant (Jones, 1986). On the other hand, using Eq. (63), we estimate the characteristic
length of mesoscopic flow as ‘m � 1.1 cm, which is comparable to the diameter of the samples (5 cm). These
calculations show that the new model can be used to describe the Biot–Gardner effect (Gardner, 1962;
White, 1986).
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8.4. Bulk attenuation in fully saturated Harz quartzite

It can be seen from Fig. 10 that there are two peaks in the frequency dependence of the bulk attenuation
QKð¼ imðeKUÞ=reðeKUÞÞ in the fully saturated Harz quartzite: one is at around 0.03 Hz, and the other is at
1.5 kHz. The data points are calculated from the measured attenuations Q�1

E and Q�1
S of extensional and

shear waves (Paffenholz and Burkhardt, 1989). The model predicts that the peak at the lower frequency
corresponds to sW � 250 s, while at the higher frequency corresponds to sW � 2 · 10�6 s. A simple calcu-
lation shows that the attenuation peak at high frequency can be attributed to microscopic (squirt) flow.
Eq. (61) gives an estimate of aspect ratio of apertures as a � 6 · 10�4. This value of aspect ratio is reason-
able for low-porosity quartzite rocks. In contrast, the attenuation peak at 0.03 Hz must be induced by mes-
oscopic flow. Using (63) the characteristic length of mesoscopic heterogeneity can be calculated as
‘m � 12 cm. This quantity is two times larger than the diameter (5 cm) of the specimens used in the exper-
iment. Such a low-frequency attenuation peak can be attributed to the so-called Biot–Gardner–White effect
that is induced by the mesoscopic fluid flow.

Attenuation measurements were recently performed over a broad range of frequencies at a single geo-
logical sequence of rocks (Sams et al., 1997). It was found that the peak of the frequency dependence of
attenuation rests in the seismic frequency range. Pride et al. (2003) reanalyzed Sams et al.�s data and implied
that the attenuation could be induced by mesoscopic flow. Unfortunately, the properties of relevant mate-
rials are not available. It is reasonable to expect the procedure proposed in this paper will also apply to
Sams et al.�s data.

8.5. Summary and conclusions

When compressional waves propagate through porous media with local (either microscopic or meso-
scopic) heterogeneities, internal pore fluid flow can take place at micro-, meso- and macro-scales. A linear
dynamic model of fully saturated porous media with local heterogeneities is developed within the context of
Biot�s theory of poroelasticity, but based on volume averaging of microscopic equations. The effects of local
fluid flow are taken into account by the notion of the dynamic compatibility condition on the interface be-
tween the solid material and the fluid.

Complex, frequency-dependent material properties, characterizing the viscoelastic behavior associated
with local fluid flow, are derived. The complex material properties are obtained by determining the
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quasi-static poroelastic parameters, the properties of individual constituents, and the relaxation time of the
dynamic compatibility condition on the interface. In developing the relationships among various quasi-
static poroelastic properties, we show that, as far as homogeneous porous materials are concerned,
there are only three independent poroelastic parameters, and the effects of the local fluid flow on the
viscoporoelastic behavior are negligible.

Theoretical predictions are compared with the measured acoustical data available in the literature. It is
found that the model describes very well the acoustical behavior of porous media with local fluid flow over
a wide range of frequencies. The proposed model provides a theoretical framework to simulate the acous-
tical behavior of fully saturated porous media without making any explicit assumption about the structure
of local heterogeneities. The back calculated relaxation time of the dynamic compatibility condition on the
interface can, however, provide insight into the nature of these local heterogeneities.
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Appendix A. Relaxation time of microscopic fluid flow from a broken grain contact

When a compressional wave propagates through porous media, fluid flow takes place in microscopic
apertures such as microcracks and broken grain contacts. Here microscopic apertures are treated as thin,
open-edged cylindrical cavities (see Fig. 11), which can be viewed as the simple representations of broken
contacts between solid grains. A typical cylindrical cavity has a diameter of 2‘ and a thickness of 2h, i.e., the
aspect ratio a = h/‘. The total porosity n has two contributions: one is from the apertures and the other
from the nearby pore space storing free fluid. In the notion of Dvorkin et al. (1995), the microscopic aper-
tures are denoted as soft pores, with a porosity nso, and the nearby pores are rigid pores, with a porosity nst.
It is assumed that nso � nst.

The derivation of the relaxation time of fluid pressure in microscopic apertures essentially follows the
procedure by Leuer (1997) and originally proposed by Johnston et al. (1979). The fluid pressure pW and
the volume change of the fluid induced by a passing compressional wave are
Fi
pWso ¼ �KWhso; pWri ¼ �KWhri ðA:1Þ

and
DCso ¼ Csohso; DCri ¼ Crihri ðA:2Þ

where K is the bulk modulus, h is the dilation, and C is the volume concentration.
g. 11. Schematics of a broken grain contact in a porous medium: (a) broken grain contact; (b) geometric representation.
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After the fluid pressure in the soft pores is totally relaxed, the fluid pressure will equilibrate between the
soft pores and rigid pores. Let the equalized fluid pressures be �pW. The dilation of the fluid is �h ¼ ��pW=KW.
The total fluid volume displaced to equalize the pressure is given by
V t ¼ DCso � DCso ¼ DCri � DCri ðA:3Þ

where DCso ¼ Cso

�h and DCri ¼ Cri
�h. It follows from (A.3) that
�h ¼ ehso þ hri
1þ e

ðA:4Þ
where e is the volumetric ratio of soft pores to rigid pore. Now, one obtains
V t ¼ Cso

hri � hso
1þ e

ðA:5Þ
On the other hand, the average velocity w of the flow in the fluid layer between two plates separated by a
small distance 2h, induced by a pressure gradient dp/dx, is given by (Landau and Lifschitz, 1991)
w ¼ h2

3gW

dp
dx

ðA:6Þ
Hence, the flow rate of the fluid around the edge of the cavity is q0 = wA = (4ph‘)w. Setting
dp=dx � ðpWso � pWri Þ=‘ and using (A.1), one obtains
q0 �
4ph3KW

3gW
ðhri � hsoÞ ðA:7Þ
Assuming the flow rate has a time dependence of q0exp(�t/sW), the total fluid volume displaced can be
expressed by
V t ¼
Z 1

0

ðq0e�t=sWÞdt ¼ q0sW ðA:8Þ
Noting that Cso = 2p‘2h and using (A.5) and (A.8), one derives
sW ¼ 3gW
2KWa2ð1þ eÞ ðA:9Þ
Note that e is a very small quantity, i.e. e � 1. Hence, one obtains Eq. (61).
More realistically, microscopic apertures have a distribution of aspect ratio am. In this paper, for the

sake of simplicity, we will not consider such a distribution. Instead, a typical single aspect ratio a is assumed
for the apertures.
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